Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2662-2674.doi: 10.19799/j.cnki.2095-4239.2025.0072
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Liyue HU1(), Wei HUANG1(
), Yun ZHOU1, Yingqiang ZHOU1, Changzheng SHAO2, Ke WANG2
Received:
2025-01-22
Revised:
2025-02-14
Online:
2025-07-28
Published:
2025-07-11
Contact:
Wei HUANG
E-mail:hly980911@163.com;hw1997@cqu.edu.cn
CLC Number:
Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems[J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674.
[1] | 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89. DOI: 10.13336/j.1003-6520.hve. 20191227008. |
SUN Y S, YANG M, SHI C L, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1): 80-89. DOI: 10.13336/j.1003-6520.hve. 20191227008. | |
[2] | 展浚哲, 史泽中, 汪涛. 多元电化学储能技术综述[J]. 电力科技与环保, 2024, 40(3): 237-249. DOI: 10.19944/j.eptep.1674-8069. 2024.03.003. |
ZHAN J Z, SHI Z Z, WANG T. Overview of multivariate electrochemical energy storage technologies[J]. Electric Power Technology and Environmental Protection, 2024, 40(3): 237-249. DOI: 10.19944/j.eptep.1674-8069.2024.03.003. | |
[3] | 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254. |
YANG X L, YUAN S S, YANG W J, et al. Research progress on energy density of Li-ion batteries for EVs[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254. | |
[4] | 曹东学. 锂离子电池负极材料技术现状和发展趋势[J]. 炼油技术与工程, 2024, 54(9): 1-7. DOI: 10.20138/j.cnki.issn1002-106X. 2024. 09.001. |
CAO D X. Technology status and development trend of anode materials for lithium-ion batteries[J]. Petroleum Refinery Engineering, 2024, 54(9): 1-7. DOI: 10.20138/j.cnki.issn1002-106X.2024.09.001. | |
[5] | 中国化学与物理电源行业协会. 2024新型储能产业发展发展白皮书[R]. 2024-03. |
China Chemical and Physical Power Supply Industry Association. 2024 White paper on the development of new energy storage industry [R]. 2024-03. | |
[6] | 曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. DOI: 10. 19799/j.cnki.2095-4239.2020.0127. |
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. DOI: 10.19799/j.cnki.2095-4239.2020.0127. | |
[7] | 曹志成, 管敏渊, 楼平, 等. 锂离子电池热失控早期特征及预警方法综述[J]. 电源技术, 2024, 48(5): 771-780. DOI: 10.3969/j.issn. 1002-087X.2024.05.002. |
CAO Z C, GUAN M Y, LOU P, et al. Review on early thermal runaway characteristic signal and warning method of lithium ion battery[J]. Chinese Journal of Power Sources, 2024, 48(5): 771-780. DOI: 10.3969/j.issn.1002-087X.2024.05.002. | |
[8] | 秦睿, 陈思思, 匡卫洪, 等. 锂离子电池储能电站安全问题与解决策略分析[J]. 电工技术, 2024(9): 159-161. DOI: 10.19768/j.cnki.dgjs. 2024.09.045. |
QIN R, CHEN S S, KUANG W H, et al. Analysis of safety issues and solutions for lithium-ion battery energy storage power stations[J]. Electric Engineering, 2024(9): 159-161. DOI: 10.19768/j.cnki.dgjs.2024.09.045. | |
[9] | 周志钻, 王博轩, 宋露露, 等. 锂离子电池热失控行为及火灾危险性研究综述[J]. 消防科学与技术, 2024, 43(5): 605-612. DOI: 10. 20168/j.1009-0029.2024.05.605.08. |
ZHOU Z Z, WANG B X, SONG L L, et al. Review on thermal runaway behaviors and fire hazards of lithium-ion batteries[J]. Fire Science and Technology, 2024, 43(5): 605-612. DOI: 10. 20168/j.1009-0029.2024.05.605.08. | |
[10] | 刘宇, 张玉魁, 王荣, 等. 锂离子电池储能设备安全风险分析及管控措施[J]. 内蒙古电力技术, 2024, 42(3): 1-7. DOI: 10.19929/j.cnki.nmgdljs.2024.0033. |
LIU Y, ZHANG Y K, WANG R, et al. Analysis and control measures for safety risks of lithium-ion battery energy storage equipments[J]. Inner Mongolia Electric Power, 2024, 42(3): 1-7. DOI: 10.19929/j.cnki.nmgdljs.2024.0033. | |
[11] | JIA Y K, UDDIN M, LI Y X, et al. Thermal runaway propagation behavior within 18, 650 lithium-ion battery packs: A modeling study[J]. Journal of Energy Storage, 2020, 31: 101668. DOI: 10.1016/j.est.2020.101668. |
[12] | HOELLE S, ZIMMERMANN S, HINRICHSEN O. 3D thermal simulation of thermal runaway propagation in lithium-ion battery cell stack: Review and comparison of modeling approaches[J]. Journal of the Electrochemical Society, 2023, 170(6): 060516. DOI: 10.1149/1945-7111/acd966. |
[13] | 胡力月, 姚行艳. 基于正交试验的锂离子电池热失控仿真[J]. 储能科学与技术, 2023, 12(4): 1268-1277. DOI: 10.19799/j.cnki.2095-4239.2022.0701. |
HU L Y, YAO X Y. Thermal runaway of lithium-ion batteries based on orthogonal test[J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. DOI: 10.19799/j.cnki.2095-4239.2022. 0701. | |
[14] | 齐创, 邝男男, 张亚军, 等. 高比能锂离子电池模组热扩散行为仿真研究[J]. 高电压技术, 2021, 47(7): 2633-2643. DOI: 10.13336/j. 1003-6520.hve.20201049. |
QI C, KUANG N N, ZHANG Y J, et al. Simulation study on the thermal propagation behavior of high energy density lithium-ion battery module[J]. High Voltage Engineering, 2021, 47(7): 2633-2643. DOI: 10.13336/j.1003-6520.hve.20201049. | |
[15] | 陈龙, 张振东, 盛雷, 等. 锂离子电池模组热失控传播实验研究[J]. 上海理工大学学报, 2024, 46(5): 525-532. DOI: 10.13255/j.cnki.jusst. 20230427006. |
CHEN L, ZHANG Z D, SHENG L, et al. Experimental study on thermal runaway propagation of lithium-ion battery modules[J]. Journal of University of Shanghai for Science and Technology, 2024, 46(5): 525-532. DOI: 10.13255/j.cnki.jusst.20230427006. | |
[16] | 孙延先, 姜兆华. 锂离子电池模组过充热失控扩散仿真[J]. 电池, 2019, 49(6): 481-484. DOI: 10.19535/j.1001-1579.2019.06.007. |
SUN Y X, JIANG Z H. Simulation of thermal runaway diffusion in overcharging of Li-ion battery module[J]. Battery Bimonthly, 2019, 49(6): 481-484. DOI: 10.19535/j.1001-1579.2019.06.007. | |
[17] | 李校磊, 高健, 周伟东, 等. COMSOL Multiphysics在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(2): 546-567. DOI: 10.19799/j.cnki.2095-4239.2023.0577. |
LI X L, GAO J, ZHOU W D, et al. Application of COMSOL multiphysics in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. DOI: 10.19799/j.cnki. 2095-4239.2023.0577. | |
[18] | JOKAR A, RAJABLOO B, DÉSILETS M, et al. Review of simplified pseudo-two-dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 44-55. DOI: 10.1016/j.jpowsour.2016.07.036. |
[19] | NEWMAN J, THOMAS-ALYEA K E. Electroche-mical systems[M]. American: John Wiley and Sons, 2012. |
[20] | BIZERAY A M, ZHAO S, DUNCAN S R, et al. Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter[J]. Journal of Power Sources, 2015, 296: 400-412. DOI: 10.1016/j.jpowsour.2015.07.019. |
[21] | 王兵. 车用锂离子动力电池及模组热失控的实验与仿真研究[D]. 北京: 北京工业大学, 2018. |
WANG B. Study on thermal runaway of lithium-ion power battery or module for electric vehicle through experiment and simulation[D]. Beijing: Beijing University of Technology, 2018. | |
[22] | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
[23] | OUYANG N, ZHANG W C, YIN X X, et al. A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions[J]. Energy, 2023, 273: 127168. DOI: 10.1016/j.energy.2023.127168. |
[24] | Cohen J, Cohen P, West S. G, et al. Applied multiple regression/correlation analysis for the behavioral sciences[M]. American:Lawrence Erlbaum Associates,2003. |
[25] | XUE J K, SHEN B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6. |
[1] | Yuan LI, Mingzhi ZHAO, Yujie XU, Jie CAI. Variable-operating-condition operational characteristics of liquid carbon dioxide energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2761-2771. |
[2] | Xiaohui ZHANG, Ruigeng YANG, Songkun JIAO. Research on capacity planning and demand forecasting for energy storage systems based on machine learning [J]. Energy Storage Science and Technology, 2025, 14(7): 2881-2883. |
[3] | Yinchi SHAO, Yu GONG, Meng NIU, Ruohuan YANG, Yating LIU, Ran DING. Grid-forming energy storage system taking phase angle and amplitude jumps into account short-circuit current characteristics and its calculation model [J]. Energy Storage Science and Technology, 2025, 14(6): 2451-2461. |
[4] | Xun CHEN. Energy management and optimal scheduling strategies for energy storage systems based on deep reinforcement learning [J]. Energy Storage Science and Technology, 2025, 14(6): 2439-2441. |
[5] | Junyang XIAO, Jinge LUO, Weizhe MA, Wuping CHENG, Tong ZENG. Energy storage optimization control strategy in distribution system based on improved artificial bee colony algorithm [J]. Energy Storage Science and Technology, 2025, 14(6): 2567-2574. |
[6] | Qingxiang XU, Wei TENG, Run QIN, Shunyi SONG, Yibing LIU, Shuangyin LIANG. Energy management and control strategy for grid-connected frequency regulation flywheel energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2013-2022. |
[7] | Bing YAN, XU Hu, Zhenling LI. Research on intelligent operation and maintenance model of energy storage systems supported by big data [J]. Energy Storage Science and Technology, 2025, 14(5): 2010-2012. |
[8] | Shiming LI. Application of artificial Intelligence in the fault detection of energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1698-1700. |
[9] | Tian GAO, Zufan WANG, Shuyang FANG, Youkang ZHANG, Liancheng ZHANG, Yongzhang HUANG, Haisen ZHAO. Energy efficiency analysis model and experimental verification of gravity energy storage system with gear box and chain transmission mechanisms [J]. Energy Storage Science and Technology, 2025, 14(2): 688-698. |
[10] | Huaiyu HUANG, Silin HUANG, Rongchao ZHAO, Zhiwen XIAO, Junhui HOU, Liwei YAN. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. |
[11] | Juan PANG, Jinling SUN. Discussion on the application and economic benefits of distributed energy storage systems on the basis of energy interconnection [J]. Energy Storage Science and Technology, 2025, 14(2): 868-870. |
[12] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[13] | Daxing ZHANG, Zerong HUANG, Xiangdong WANG, Yankai Wang, Bingzi CAI, Haoyu YUAN, Mingming TIAN, Yingping YUAN, Yuan CAO. Balancing control strategy for cascaded utilization of battery systems using power converters [J]. Energy Storage Science and Technology, 2024, 13(5): 1635-1642. |
[14] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[15] | Yan ZHANG, Zheng YUAN. Microelectromechanical control technology for compressed air energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1551-1553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||