Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (1): 69-77.doi: 10.12028/j.issn.2095-4239.2016.0065
Previous Articles Next Articles
WEI Lianmei1, YAN Xixi1, ZHANG Suna1, ZHANG Jie2, WU Minchang2, QIAO Yongmin2, WANG Lijun1
Received:
2016-08-31
Revised:
2016-10-17
Online:
2017-01-03
Published:
2017-01-03
WEI Lianmei1, YAN Xixi1, ZHANG Suna1, ZHANG Jie2, WU Minchang2, QIAO Yongmin2, WANG Lijun1 . Progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1): 69-77.
[1] 侯远志, 焦黎帆. 国内外智慧城市建设研究综述[J]. 产业与科技论坛, 2014, 24: 94-97. HOU Yuanzhi, JIAO Lifan. Overview of national and international smart city[J]. Industrial & Science Tribune, 2014, 24: 94-97. [2] 国家电网公司“电网新技术前景研究”项目咨询组. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8. Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems. An analysis of prospects for application of large-scale energy storage technology in power system[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8. [3] 袁小明, 程时杰, 文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 14-18. YUAN Xiaoming, CHENG Shijie, WEN Jinyu. Prospects analysis of energy storage application in grid integration of lager-scalr wind power[J]. Automation of Electric Power Systems, 2013, 37(1): 14-18. [4] 罗星, 王吉红, 马钊. 储能技术综述及其在智能电网中的应用展望[J]. 智能网, 2014, 2(1): 7-12. LUO Xing, WANG Jihong, MA Zhao. Overview of energy storage technologies and their application prospects in smart grid[J]. Smart Grid, 2014, 2(1): 7-12. [5] 周林, 黄勇, 郭珂, 等. 微电网储能技术研究综述[J]. 电力系统保护与控制, 2011, 39(7): 147-152. ZHOU Lin, HUANG Yong, GUO Ke, et al. A survey of energy storage technology for micro grid[J]. Power System Protection and Control, 2011, 39(7): 147-152. [6] CNESA. White paper on energy storage industry research 2016[R]. Beijing: Zhongguancun Energy Storage Industry Technology Alliance, 2016. [7] ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246. [8] ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061. [9] LIN H P, CHUA D, SALOMON M, et al. Low-temperature behavior of Li-ion cells[J]. Electrochemical and Solid-State Letters, 2001, 4(6): A71-A73. [10] ZHANG S S, XU K, JOW T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources, 2006, 156(2): 629-633. [11] ZHANG S S, XU K, JOW T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta, 2006, 51(8): 1636-1640. [12] LÓPEZ C M, VAUGHEY J T, DEES D W. Morphological transitions on lithium metal anodes[J]. Journal of the Electrochemical Society, 2009, 156(9): A726-A729. [13] LÓPEZ C M, VAUGHEY J T, DEES D W. Insights into the role of interphasial morphology on the electrochemical performance of lithium electrodes[J]. Journal of the Electrochemical Society, 2012, 159(6): A873-A886. [14] 倪江锋, 周恒辉, 陈继涛, 等. 锂离子电池中固体电解质界面膜 (SEI)研究进展[J]. 化学进展, 2004, 16(3): 335-342. NI Jiangfeng, ZHOU Henghui, CHEN Jitao, et al. Progress in solid electrolyte interface in lithium ion batteries[J]. Progress in Chemistry, 2004, 16(3): 335-342. [15] YAMAKI J, SHINJO Y, DOI T, et al. The rate equation of decomposition for electrolytes with LiPF6 in Li-ion cells at elevated temperatures[J]. Journal of the Electrochemical Society, 2015, 162(4): A520-A530. [16] 张昕岳, 周园, 邓小宇, 等. 锂离子电池LiBF4基液体电解质研究进展[J]. 化学通报, 2007(12): 929-935. ZHANG Xiyue, ZHOU Yuan, DENG Xiaoyu, et al. Progress in LiBF4-based liquid electrolytes for Li-ion batteries[J]. Chemistry Bulletin, 2007(12): 929-935. [17] XU K, ZHANG S S, LEE U, et al. LiBOB: Is it an alternative salt for lithium ion chemistry?[J]. Journal of Power Sources, 2005, 146(1): 79-85. [18] ZHANG S S, XU K, JOW T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range[J]. Journal of Power Sources, 2006, 159(1): 702-707. [19] AURBACH D, NAYAK P, GRINBLAT J, et al. Effect of lithium bis(oxalate) borate(LiBOB) as an additive in electrolyte for enhanced cycling stability of Li-rich Li1.2Ni0.16Mn0.56Co0.08O2 cathodes[C] //Meeting Abstracts. The Electrochemical Society, 2015(1): 71. [20] XU K, ZHANG S, JOW T R. Electrolyte formulations for wide temperature lithium ion batteries: US 20100129721[P]. 2014. [21] LI S, LI X, LIU J, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015, 21(4): 901-907. [22] 石家华, 孙逊, 杨春和, 等.离子液体研究进展[J].化学学报, 2002(4): 243-250. SHI Jiahua, SUN Xun, YANG Chunhe, et al.Progress of Ionic Liqiud[J]. Chemistry Bulletin, 2002(4): 243-250. [23] GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. [24] UE M, TAKEDA M, TORIUMI A, et al. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors[J]. Journal of the Electrochemical Society, 2003, 150(4): A499-A502. [25] KÜHNEL R S, BÖCKENFELD N, PASSERINI S, et al. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries[J]. Electrochimica Acta, 2011, 56(11): 4092-4099. [26] LIAO X Z, MA Z F, GONG Q, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte[J]. Electrochemistry Communications, 2008, 10(5): 691-694. [27] ZHENG J, GU M, XIAO J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process[J]. Nano Letters, 2013, 13(8): 3824-3830. [28] GU M, GENC A, BELHAROUAK I, et al. Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries[J]. Chemistry of Materials, 2013, 25(11): 2319-2326. [29] ITO A, SHODA K, SATO Y, et al. Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge[J]. Journal of Power Sources, 2011, 196(10): 4785-4790. [30] HERREYRE S, HUCHET O, BARUSSEAU S, et al. New Li-ion electrolytes for low temperature applications[J]. Journal of Power Sources, 2001, 97: 576-580. [31] DING M S. Liquid-solid phase diagrams of ternary and quaternary organic carbonates[J]. Journal of the Electrochemical Society, 2004, 151(5): A731-A738. [32] 肖利芬, 艾新平, 杨汉西, 等. 锂离子电池用低温电解质溶液研究[J]. 电池, 2004, 34(1): 10-12. XIAO Lifen, AI Xinping, YANG Hanxi, et al. Research on low temperature electrolyte for li-ion batteries[J]. Battery Bimonthly, 2004, 34(1): 10-12. [33] SMART M C, RATNAKUMAR B V, SURAMPUDI S. Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of the Electrochemical Society, 1999, 146(2): 486-492. [34] SAZHIN S V, KHIMCHENKO M Y, TRITENICHENKO Y N, et al. Performance of Li-ion cells with new electrolytes conceived for low-temperature applications[J]. Journal of Power Sources, 2000, 87(1): 112-117. [35] SHIAO H C A, CHUA D, LIN H, et al. Low temperature electrolytes for Li-ion PVDF cells[J]. Journal of Power Sources, 2000, 87(1): 167-173. [36] WANG C, APPLEBY A J, LITTLE F E. Irreversible capacities of graphite anode for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2002, 519(1): 9-17. [37] 王夏芬. 锂离子电池低温电解液的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. WANG X F. Research on low temperature electrolyte for Li-ion batteries[D]. Harbin: Harbin Institute of Technology , 2009. [38] 任永欢. 锂离子电池低温/高电压电解液研究[D]. 北京: 北京理工大学, 2015. REN Y H. Low temperature/high voltage electrolyte for lithium ion battery[D]. Beijing: Beijing Institute of Technology, 2015. [39] WRODNIGG G H, WRODNIGG T M, BESENHARD J O, et al. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[J]. Electrochemistry Communications, 1999, 1(3): 148-150. [40] TAKEUCHI S, MIYAZAKI K, SAGANE F, et al. Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions[J]. Electrochimica Acta, 2011, 56(28): 10450-10453. [41] XIANG H, MEI D, YAN P, et al. The role of cesium cation in controlling interphasial chemistry on graphite anode in propylene carbonate-rich electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20687-20695. [42] SASAKI Y, EBARA R, NANBU N, et al. Direct fluorination of γ-butyrolactone[J]. Journal of Fluorine Chemistry, 2001, 108(1): 117-120. [43] SASAKI Y. Organic electrolytes of secondary lithium batteries[J]. Electrochemistry, 2008, 76(1): 2-15. [44] KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193. [45] WRODNIGG G H, BESENHARD J O, WINTER M. Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?[J]. Journal of Power Sources, 2001, 97: 592-594. [46] 王洪伟, 杜春雨, 王常波. 锂离子电池的低温性能研究[J]. 电池, 2009(4): 208-210. WANG Hongwei, DU Chunyu, WANG Changbo. Study of low temperature performance of Li-ion battery[J]. Battery Bimonthly, 2009(4): 208-210. [47] WAGNER R, BROX S, KASNATSCHEEW J, et al. Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries[J]. Electrochemistry Communications, 2014, 40: 80-83. [48] BHATTACHARYYA A J, DOLLÉ M, MAIER J. Improved Li-battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions[J]. Electrochemical and Solid-State Letters, 2004, 7(11): A432-A434. [49] HAMENU L, LEE H S, LATIFATU M, et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries[J]. Current Applied Physics, 2016, 16(6): 611-617. [50] WON J H, LEE H S, HAMENU L, et al. Improvement of low-temperature performance by adopting polydimethylsiloxane- g-polyacrylate and lithium-modified silica nanosalt as electrolyte additives in lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 325-329. [51] LI Y, FEDKIW P S. Effect of gel electrolytes containing silica nanoparticles on aluminum corrosion[J]. Electrochimica Acta, 2007, 52(7): 2471-2477. [52] PRASANTH R, SHUBHA N, HNG H H, et al. Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries[J]. European Polymer Journal, 2013, 49(2): 307-318. [53] WANG X L, CAI Q, FAN L Z, et al. Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries[J]. Electrochimica Acta, 2008, 53(27): 8001-8007. [54] JEONG H S, HONG S C, LEE S Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/ poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. Journal of Membrane Science, 2010, 364(1): 177-182. [55] LI Y D, ZHAO S X, NAN C W, et al. Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery[J]. Journal of Alloys and Compounds, 2011, 509(3): 957-960. [56] LOUIS H, LEE Y G, KIM K M, et al. Suppression of aluminum corrosion in lithium bis(trifluoromethanesulfonyl) imide-based electrolytes by the addition of fumed silica[J]. Bulletin of the Korean Chemical Society, 2013, 34(6): 1795-1799. [57] LIAO Y, RAO M, LI W, et al. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries[J]. Electrochimica Acta, 2009, 54(26): 6396-6402. [58] LI Y, YERIAN J A, KHAN S A, et al. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries[J]. Journal of Power Sources, 2006, 161(2): 1288-1296. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[6] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[7] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[8] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[9] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[10] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[11] | Shaopeng SU, Jin LI, Dianping ZHANG, Yan LI, Wen XI, Yang LI. Preparation and electrochemical properties of negative eletrode materials for tamarium-based lithiumion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2082-2089. |
[12] | Mingchang HU, Xueqing ZHOU, Xueyan HUANG, Jianjun XUE. Solvent-free fabrication of zinc-air electrodes and their battery performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2090-2096. |
[13] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[14] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[15] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||