Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 961-980.doi: 10.12028/j.issn.2095-4239.2017.0094
Previous Articles Next Articles
LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1
Received:
2017-06-01
Revised:
2017-06-27
Online:
2017-09-01
Published:
2017-09-01
LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1. Research progress on sodium ion solid-state electrolytes[J]. Energy Storage Science and Technology, 2017, 6(5): 961-980.
[1] 碳酸锂产业网. http://tsl.100ppi.com[N/OL]. [2] 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 282-292. FANG Zheng, CAO Yuliang, HU Yongsheng, et al. Economic analysis for room-temperature sodium-ion battery technologies [J]. Energy Storage Science and Technology, 2016, 5(2): 282-292. [3] 张舒, 王少飞, 凌世刚, 等. 锂离子电池基础科学问题(X)—— 全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. ZHANG Shu, WANG Shaofei, LING Shigang, et al. Fundamental scientific aspects of lithium ion batteries (X) —— All-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. [4] HUESO K B, ARMAND MROJO T. High temperature sodium batteries: Status, challenges and future trends[J]. Energy & Environmental Science, 2013, 6(3): 734-749. [5] 工藤彻一 • 笛木和熊, 固体离子学[M]. 董治长,译. 北京: 北京工业 大学出版社, 1992: 92-93. [6] BIRNIE D. On the structural integrity of the spinel block in the β"-alumina structure[J]. Acta Crystallographica Section B, 2012, 68(2): 118-122. [7] ZHANG G, WEN Z, WU X, et al. Sol-gel synthesis of Mg2+ stabilized Na-β”/β-Al2O3 solid electrolyte for sodium anode battery[J]. Journal of Alloys and Compounds, 2014, 613: 80-86. [8] ZAHARESCU M, PARLOG C, STANCOVSCHI V, et al. The influence of the powders synthesis method on the microstructure of lanthanum-stabilized β-alumina ceramics[J]. Solid State Ionics, 1985, 15(1): 55-60. [9] WEN Z, HU Y, WU X, et al. Main challenges for high performance NAS battery: Materials and interfaces[J]. Advanced Functional Materials, 2013, 23(8): 1005-1018. [10] ZHU C, XUE J. Structure and properties relationships of beta-Al2O3 electrolyte materials[J]. Journal of Alloys and Compounds, 2012, 517: 182-185. [11] GHADBEIGI L, SZENDREI A, MORENO P, et al. Synthesis of iron-doped Na-β”-alumina + yttria-stabilized zirconia composite electrolytes by a vapor phase process[J]. Solid State Ionics, 2016, 290: 77-82. [12] XU D, JIANG H, LI M, et al. Synthesis and characterization of Y2O3 doped Na-β″- Al2O3 solid electrolyte by double zeta process[J]. Ceramics International, 2015, 41(4): 5355-5361. [13] WEI X, CAO Y, LU L, et al. Synthesis and characterization of titanium doped sodium beta”-alumina[J]. Journal of Alloys and Compounds, 2011, 509(21): 6222-6226. [14] XU D, JIANG H, LI Y, et al. The mechanical and electrical properties of Nb2O5 doped Na-β″- Al2O3 solid electrolyte[J]. Eur. Phys. J. Appl. Phys., 2016, 74(1): 10901. [15] RAY A K, SUBBARAO E C. Synthesis of sodium β and β″ alumina[J]. Materials Research Bulletin, 1975, 10(6): 583-590. [16] SARTORI S, MARTUCCI A, MUFFATO A, et al. Sol-gel synthesis of Na+ beta- Al2O3 powders[J]. Journal of the European Ceramic Society, 2004, 24(6): 911-914. [17] JAYARAMAN V, GNANASEKARAN T, PERIASWAMI G. Low-temperature synthesis of β-aluminas by a sol-gel technique[J]. Materials Letters, 1997, 30(2): 157-162. [18] YAMAGUCHI S, TERABE K, IGUCHI Y, et al. Formation and crystallization of beta-alumina from precursor prepared by sol-gel method using metal alkoxides[J]. Solid State Ionics, 1987, 25(2): 171-176. [19] TAKAHASHI T, KUWABARA K. β-Al2O3 synthesis from m-Al2O3[J]. Journal of Applied Electrochemistry, 1980, 10(3): 291-297. [20] SUTORIK A C, NEO S S, TREADWELL D R, et al. Synthesis of ultrafine β″-alumina powders via flame spray pyrolysis of polymeric precursors[J]. Journal of the American Ceramic Society, 1998, 81(6): 1477-1486. [21] PARK H C, LEE Y B, LEE S G, et al. Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates[J]. Ceramics International, 2005, 31(2): 293-296. [22] PEKARSKY A, NICHOLSON P S. The relative stability of spray-frozen/freeze-dried β″-Al2O3 powders[J]. Materials Research Bulletin, 1980, 15(10): 1517-1524. [23] KOH J-H, WEBER N, VIRKAR A V. Synthesis of lithium-beta-alumina by various ion-exchange and conversion processes[J]. Solid State Ionics, 2012, 220: 32-38. [24] WANG Z, LI X, FENG Z. The effect of CTAB on the citrate sol-gel process for the synthesis of sodium beta-alumina nano-powders[J]. Bull. Korean Chem. Soc., 2011, 32(4): 1310-1314. [25] BUTEE S, KAMBALE K, FIRODIYA M. Electrical properties of sodium beta-alumina ceramics synthesized by citrate sol-gel route using glycerine[J]. Processing and Application of Ceramics, 2016, 10(2): 67-72. [26] WEI T, GONG Y, ZHAO X, et al. An all-ceramic solid-state rechargeable Na+-battery operated at intermediate temperatures[J]. Advanced Functional Materials, 2014, 24(34): 5380-5384. [27] KIM I, PARK J Y, KIM C H, et al. A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode[J]. Journal of Power Sources, 2016, 301: 332-337. [28] ZHAO K, LIU Y, ZHANG S, et al. A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na-β″-Al2O3 electrolyte and NaTi2(PO4)3 cathode[J]. Electrochemistry Communications, 2016, 69: 59-63. [29] LIU L, QI X, MA Q, et al. Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J]. Acs Applied Materials & Interfaces, 2016, 8(48): 32631-32636. [30] YU J, HU Y S, PAN F, et al. A class of liquid anode for rechargeable batteries with ultra long cycle life[J]. Nature Communications, 2017, 8: doi:10.1038/ncomms14629. [31] GOODENOUGH J B, HONG H Y PKAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. [32] HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. [33] SAMIEE M, RADHAKRISHNAN B, RICE Z, et al. Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases[J]. Journal of Power Sources, 2017, 347: 229-237. [34] ANANTHARAMULU N, RAO K, RAMBABU G, et al. A wide-ranging review on NASICON type materials[J]. Journal of Materials Science, 2011, 46(9): 2821-2837. [35] SAITO Y, ADO K, ASAI T, et al. Ionic conductivity of NASICON-type conductors Na1.5M0.5Zr1.5(PO4)3 (M: A13+, Ga3+, Cr3+, Sc3+, Fe3+, In3+, Yb3+, Y3+)[J]. Solid State Ionics, 1992, 58: 327-331. [36] WINAND J M, RULMONT A, TARTE P. Ionic conductivity of the Nal+xMxZr2x(PO4)3 systems (M= AI, Ga, Cr, Fe, Sc, In, Y, Yb)[J]. Journal of Materials Science, 1990, 25: 4008-4013. [37] SUSMAN S, DELBECQ C J, BRUN T O, et al. Fast ion transport in the NASICON analog Na3Sc2(PO4)3: Structure and conductivity[J]. Solid State Ionics, 1983, 9: 839-844. [38] KIM J H, OH T S, LEE M S, et al. Effects of Al2O3 addition on the sinterability and ionic conductivity of nasicon[J]. Journal of Materials Science, 1993, 28(6): 1573-1577. [39] MIYAJIMA Y, MIYOSHI T, TAMAKI J, et al. Solubility range and ionic conductivity of large trivalent ion doped Na1+xMxZr2xP3O12(M: In, Yb, Er, Y, Dy, Tb, Gd) solid electrolytes[J]. Solid State Ionics, 1999, 124: 201-211. [40] DELMAS C, OLAZCUAGA R, FLEM G, et al. Ionic conductivity of the Na1+xZr2xLx(PO4)3 (L = Cr, In, Yb) solid solutions[J]. Solid State Ionics, 1981, 3(4): 209-214. [41] MIYAJIMA Y, SAITO Y, MATSUOKA M, et al. Ionic conductivity of NASICON-type Na1+xMxZr2xP3O12 (M: Yb, Er, Dy)[J]. Solid State Ionics, 1996, 84: 61-64. [42] 岳勇, 周凤岐, 庞文琴, 等. Na1xZr2xNbxP3O12系列化合物的水热 晶化研究[J]. 无机化学学报, 1995, 11(1): 19-23. YUE Yong, ZHOU Fengqi, PANG Wenqin, et al. Hydrothermal crystallization of Na1xZr2xNbxP3O12 series compounds[J]. Journal of Inorganic Chemistry. 1995, 11(1): 19-23. [43] ZHANG Q, WEN Z, LIU Y, et al. Na+ ion conductors of glass-ceramics in the system Na1+xAlxGe2xP3O12(0.3x1.0)[J]. Journal of Alloys and Compounds, 2009, 479(1/2): 494-499. [44] WANG W, WANG S, RAO L, et al. Study of Na1+x+yZr2−yNdySix P3xO12 fast ion conductors[J]. Solid State Ionics, 1988, 28: 424-426. [45] WANG W, LI D, ZHAO J. Solid phase synthesis and characterization of Na3Zr2yNb0.8ySi2PO12 system[J]. Solid State Ionics, 1992, 51(1/2): 97-100. [46] LIN Z X, TIAN S B. Phase relationship and electrical-conductivity of Na3Zr2xYbxSi2xP1+xO12 system[J]. Solid State Ionics, 1983, (9/10)(12): 809-811. [47] CAVA R J, VOGEL E M, JOHNSON D W. Effect of homovalent framework cation substitutions on the sodium ion conductivity in Na3Zr2Si2PO12[J]. Journal of the American Ceramic Society, 1982, 65(9): c157-c159. [48] SLADE R C T, YOUNG K E, BONANOS N. Hydronium and ammonium NASICONs: Investigations of conductivity and conduction mechanism[J]. Solid State Ionics, 1991, 46(1): 83-88. [49] VOGEL E M, CAVA R J, RIETMAN E. Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1+xHf2SixP3−xO12[J]. Solid State Ionics, 1984, 14(1): 1-6. [50] BOHNKE O, RONCHETTI S, MAZZA D. Conductivity measurements on nasicon and nasicon-modified materials[J]. Solid State Ionics, 1999, 122(1/4): 127-136. [51] TAKAHASHI T, KUWABARA K, SHIBATA M. Solid-state ionics - conductivitis of Na+ ion conductors based on NASICON[J]. Solid State Ionics, 1980, 1: 163-175. [52] KROK F, KONY D, DYGAS J R, et al. On some properties of NASICON doped with MgO and CoO[J]. Solid State Ionics, 1989, 36(3): 251-254. [53] KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electrochimica Acta, 2016, 196: 337-347. [54] KURIAKOSE A K, WHEAT T A, AHMAD A, et al. Synthesis, sintering, and microstructure of Nasicons[J]. Journal of the American Ceramic Society, 1984, 67(3): 179-183. [55] MCENTIRE B J, BARTLETT R A, MILLER G R, et al. Effect of decomposition on the densification and properties of Nasicon ceramic electrolytes[J]. Journal of the American Ceramic Society, 1983, 66(10): 738-742. [56] LEE J S, CHANG C M, LEE Y I L, et al. Spark plasma sintering (SPS) of NASICON ceramics[J]. Journal of the American Ceramic Society, 2004, 87(2): 305-307. [57] FUENTES R O, FIGUEIREDO F, MARQUES F M B, et al. Optimised NASICON ceramics for Na+ sensing[J]. Ionics, 2002, 8(5): 383-390. [58] LEE S M, LEE S T, LEE D H, et al. Effect of particle size on the density and ionic conductivity of Na3Zr2Si2PO12 NASICON[J]. Journal of Ceramic Processing Research, 2015, 16(1): 49-53. [59] MA Q, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28(13): 4821-4828. [60] ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life[J]. Advanced Energy Materials, 2016: doi:10.1002/aem.20 1601196. [61] GUIN M, TIETZ F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries[J]. Journal of Power Sources, 2015, 273: 1056-1064. [62] JOLLEY A G, TAYLOR D D, SCHREIBER N J, et al. Structural investigation of monoclinic-rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON[J]. Journal of the American Ceramic Society, 2015, 98(9): 2902-2907. [63] TATSUMISAGO M, NAGAO M, HAYASHI A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries[J]. Journal of Asian Ceramic Societies, 2013, 1(1): 17-25. [64] JANSEN M, HENSELER U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate[J]. Journal of Solid State Chemistry, 1992, 99(1): 110-119. [65] TANIBATA N, NOI K, HAYASHI A, et al. X-ray crystal structure analysis of sodium-ion conductivity in 94 Na3PS46 •Na4SiS4 glass- ceramic electrolytes[J]. ChemElectroChem, 2014, 1(7): 1130-1132. [66] SO Y, AKITOSHI H, MASAHIRO T. Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide[J]. Chemistry Letters, 2015, 44(7): 884-886. [67] ZHU Z, CHU I H, DENG Z, et al. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor[J]. Chemistry of Materials, 2015, 27(24): 8318-8325. [68] KLERK N J J, WAGEMAKER M. Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping[J]. Chemistry of Materials, 2016, 28(9): 3122-3130. [69] CHU I H, KOMPELLA C S, NGUYEN H, et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor[J]. Scientific Reports, 2016, 6: doi:10.1038/srep33733. [70] BO S H, WANG Y, KIM J C, et al. Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4[J]. Chemistry of Materials, 2016, 28(1): 252-258. [71] ZHANG L, YANG K, MI J, et al. Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity[J]. Advanced Energy Materials, 2015, 5(24): 39-41. [72] ZHANG L, ZHANG D, YANG K, et al. Vacancy-contained tetragonal Na3SbS4 superionic conductor[J]. Advanced Science, 2016, 3(10): doi: 10.1002/advs.201600089. [73] BANERJEE A, PARK K H, HEO J W, et al. Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(33): 9634-9638. [74] WANG H, CHEN Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angewandte Chemie International Edition, 2016, 55(30): 8551-8555 [75] KANDAGAL V S, BHARADWAJ M D, WAGHMARE U V. Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12[J]. Journal of Materials Chemistry A, 2015, 3(24): 12992-12999. [76] RICHARDS W D, TSUJIMURA T, MIARA L J, et al. Design and synthesis of the superionic conductor Na10SnP2S12[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms11009. [77] BERBANO S S, SEO I, BISCHOFF C M, et al. Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling[J]. Journal of Non-Crystalline Solids, 2012, 358(1): 93-98. [78] NOI K, HAYASHI A, TATSUMISAGO M. Structure and properties of the Na2S-P2S5 glasses and glass-ceramics prepared by mechanical milling[J]. Journal of Power Sources, 2014, 269: 260-265. [79] RIBES M, BARRAU B, SOUQUET J L. Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S - XS2 (X: Si; Ge), Na2S - P2S5 and Li2S - GeS2 systems[J]. Journal of Non-Crystalline Solids, 1980, 38: 271-276. [80] SUSMAN S, BOEHM L, VOLIN K J, et al. A new method for the preparation of fast-conducting, reactive glass systems[J]. Solid State Ionics, 1981, 5: 667-669. [81] YAO W, MARTIN S W. Ionic conductivity of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2) system (M = Li, Na, K and Cs)[J]. Solid State Ionics, 2008, 178(33/34): 1777-1784. [82] HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: doi: 10.1038/ncomms1843. [83] TANIBATA N, NOI K, HAYASHI A, et al. Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolytes[J]. RSC Advances, 2014, 4(33): 17120-17123. [84] HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glass ceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources, 2014, 258: 420-423. [85] HIBI Y, TANIBATA N, HAYASHI A, et al. Preparation of sodium ion conducting Na3PS4-NaI glasses by a mechanochemical technique[J]. Solid State Ionics, 2015, 270: 6-9. [86] TANIBATA N, MATSUYAMA T, HAYASHI A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity[J]. Journal of Power Sources, 2015, 275: 284-287. [87] NI Y, ZHENG R, TAN X, et al. A fluorophosphate glass-ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(34): 17558-17562. [88] ZHU Y S, LI L L, LI C Y, et al. Na1+xAlxGe2−xP3O12 (x=0.5) glass-ceramic as a solid ionic conductor for sodium ion[J]. Solid State Ionics, 2016, 289: 113-117. [89] MARTIN S W, BISCHOFF C, SCHULLER K. Composition dependence of the Na+ ion conductivity in 0.5Na2S + 0.5[xGeS2 + (1–x)PS5/2] mixed glass former glasses: A structural interpretation of a negative mixed glass former effect[J]. The Journal of Physical Chemistry B, 2015, 119(51): 15738-15751. [90] KIM S K, MAO A, SEN S, et al. Fast Na-ion conduction in a chalcogenide glass-ceramic in the ternary system Na2Se-Ga2Se3- GeSe2[J]. Chemistry of Materials, 2014, 26(19): 5695-5699. [91] CHE H, CHEN S, XIE Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1075-1101. [92] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali-metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589-589. [93] ARMAND M B, CHABAGNO J M, DUCLOT M. Second International Meeting on Solid Electrolytes[C]// St. Andrews, Scotland,1978. [94] 刘晋, 徐俊毅, 林月, 等. 全固态锂离子电池的研究及产业化前景[J]. 化学学报, 2013, 71(6): 869-878. LIU Jin, XU Junyi, Lin Yue, et al. All-solid-state lithium ion battery: Research and industrial prospects[J]. Acta Chimica Sinica, 2013, 71(6): 869-878. [95] JANNASCH P. Synthesis of novel aggregating comb-shaped polyethers for use as polymer electrolytes[J]. Macromolecules, 2000, 33(23): 8604-8610. [96] KOVAČ M, GABERŠČEK M, GRDADOLNIK J. The effect of plasticizer on the microstructural and electrochemical properties of a (PEO)nLiAl(SO3Cl)4 system[J]. Electrochimica Acta, 1998, 44(5): 863-870. [97] 杜奥冰, 柴敬超, 张建军, 等. 锂电池用全固态聚合物电解质的研究 进展[J]. 储能科学与技术, 2016, 5(5): 627-648. DU Aobing, Chai Jingchao, Zhang Jianjun, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. [98] DAI Y, WANG Y, GREENBAUM S G, et al. Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides[J]. Electrochimica Acta, 1998, 43(10/11): 1557-1561. [99] BORGHINI M C, MASTRAGOSTINO M, PASSERINI S, et al. Electrochemical properties of polyethylene oxide-Li[(CF3SO2)2N]- gama-LiAlO2 composite polymer electrolytes[J]. Journal of the Electrochemical Society, 1995, 142(7): 2118-2121. [100] MASTRAGOSTINO M, SOAVI F, ZANELLI A. Improved composite materials for rechargeable lithium metal polymer batteries[J]. Journal of Power Sources, 1999, 81/82: 729-733. [101] QIAN X, GU N, CHENG Z, et al. Impedance study of (PEO)10LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes[J]. Electrochimica Acta, 2001, 46(12): 1829-1836. [102] LI Q, TAKEDA Y, IMANISH N, et al. Cycling performances and interfacial properties of a Li/PEO-Li(CF3SO2)2N-ceramic filler/LiNi0.8Co0.2O2 cell[J]. Journal of Power Sources, 2001, 97/98: 795-797. [103] APPETECCHI G B, HASSOUN J, SCROSATI B, et al. Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries[J]. Journal of Power Sources, 2003, 124(1): 246-253. [104] JI K S, MOON H S, KIM J W, et al. Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes[J]. Journal of Power Sources, 2003, 117(1/2): 124-130. [105] LI Q, ITOH T, IMANISHI N, et al. All solid lithium polymer batteries with a novel composite polymer electrolyte[J]. Solid State Ionics, 2003, 159(1/2): 97-109. [106] JIANG G, MAEDA S, YANG H, et al. All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes[J]. Journal of Power Sources, 2005, 141(1): 143-148. [107] WEST K, ZACHAU-CHRISTIANSEN B, JACOBSEN T, et al. Poly(ethylene oxide)-sodium perchlorate electrolytes in solid-state sodium cells[J]. British Polymer Journal, 1988, 20(3): 243-246. [108] HASHMI S A, CHANDRA S. Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6[J]. Materials Science and Engineering: B, 1995, 34(1): 18-26. [109] PARK C W, RYU H S, KIM K W, et al. Discharge properties of all-solid sodium-sulfur battery using poly (ethylene oxide) electrolyte[J]. Journal of Power Sources, 2007, 165(1): 450-454. [110] MOHAN V M, RAJA V, BHARGAV P B, et al. Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films[J]. Journal of Polymer Research, 2007, 14(4): 283-290. [111] BOSCHIN A, JOHANSSON P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries[J]. Electrochimica Acta, 2015, 175: 124-133. [112] QI X, MA Q, LIU L, et al. Sodium bis(fluorosulfonyl) imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries[J]. Chemelectrochem, 2016, 3(11): 1741-1745. [113] WIECZOREK W, SUCH K, WYCISLIK H, et al. Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives[J]. Solid State Ionics, 1989, 36: 255-257. [114] THAKUR A K, UPADHYAYA H M, HASHMI S A, et al. Polyethylene oxide based sodium ion conducting composite polymer electrolytes dispersed with Na2SiO3[J]. Indian Journal of Pure & Applied Physics, 1999, 37(4): 302-305. [115] NI'MAH Y L, CHENG M Y, CHENG J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381. [116] MORENO J S, ARMAND M, BERMAN M B, et al. Composite PEOn: NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization[J]. Journal of Power Sources, 2014, 248: 695-702. [117] ZHANG Z, ZHANG Q, REN C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 15823-15828. [118] CHANDRASEKARAN R, SELLADURAI S. Preparation and characterization of a new polymer electrolyte (PEO: NaClO3) for battery application[J]. Journal of Solid State Electrochemistry, 2001, 5(5): 355-361. [119] VILLALUENGA I, BOGLE X, GREENBAUM S, et al. Cation only conduction in new polymer-SiO2 nanohybrids: Na+ electrolytes[J]. Journal of Materials Chemistry A, 2013, 1(29): 8348-8352. [120] COL F, BELLA F, NAIR J R, et al. Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries[J]. Electrochimica Acta, 2015, 174: 185-190. [121] OSMAN Z, MD I, BAHIYAH K, AHMAD A, et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes[J]. Ionics, 2010, 16(5): 431-435. [122] BHARGAV P B, MOHAN V M, SHARMA A K, et al. Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications[J]. Journal of Applied Polymer Science, 2008, 108(1): 510-517. [123] BHARGAV P B, MOHAN V M, SHARMA A K, et al. Structural, electrical and optical characterization of pure and doped poly(vinyl alcohol) (PVA) polymer electrolyte films[J]. International Journal of Polymeric Materials, 2007, 56(6): 579-591. [124] BHARGAV P B, MOHAN V M, SHARMA A K, et al. Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications[J]. Current Applied Physics, 2009, 9(1): 165-171. [125] ABDULLAH O G, AZIZ S B, SABER D R, et al. Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes[J]. Journal of Materials Science: Materials in Electronics, 2017: 1-9. [126] KUMAR K N, SREEKANTH T, REDDY M J, et al. Study of transport and electrochemical cell characteristics of PVP: NaClO3 polymer electrolyte system[J]. Journal of Power Sources, 2001, 101(1): 130-133. [127] SUBBA REDDY C V, JIN A P, ZHU Q Y, et al. Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications[J]. The European Physical Journal E, 2006, 19(4): 471-476. [128] KUMAR K K, RAVI M, PAVANI Y, et al. Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps[J]. Physica B: Condensed Matter, 2011, 406(9): 1706-1712. [129] MATSUO M, KUROMOTO S, SATO T, et al. Sodium ionic conduction in complex hydrides with [BH4]− and [NH2]− anions[J]. Applied Physics Letters, 2012, 22(4): 673-692. [130] UDOVIC T J, MATSUO M, TANG W S, et al. Exceptional superionic conductivity in disordered sodium decahydro-closo- decaborate[J]. Advanced Materials, 2014, 26(45): 7622-7626. [131] UDOVIC T J, MATSUO M, UNEMOTO A, et al. Sodium superionic conduction in Na2B12H12[J]. Chem. Commun. (Camb), 2014, 50(28): 3750-3752. [132] YOSHIDA K, SATO T, UNEMOTO A, et al. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery[J]. Applied Physics Letters, 2017, 110(10): doi: 10.1063/1.4977885. [133] DUCHENE L, KUHNEL R S, RENTSCH D, et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture[J]. Chemical Communications, 2017, 53(30): 4195-4198. [134] VERDAL N, HER J H, STAVILA V, et al. Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12[J]. Journal of Solid State Chemistry, 2014, 212: 81-91. [135] VERDAL N, UDOVIC T J, STAVILA V, et al. Anion reorientations in the superionic conducting phase of Na2B12H12[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17483-17489. |
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[3] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[14] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[15] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||