Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (4): 595-606.doi: 10.12028/j.issn.2095-4239.2018.0043
Previous Articles Next Articles
LU Haoqi1, LIN Shaoxiong2, CHEN Weilun1, LIU Qiaoyun1, LUO Yu1, ZHANG Wuxing1
Received:
2018-03-26
Revised:
2018-05-21
Online:
2018-07-01
Published:
2018-07-01
CLC Number:
LU Haoqi, LIN Shaoxiong, CHEN Weilun, LIU Qiaoyun, LUO Yu, ZHANG Wuxing. Research progress on Si/C composites as anode for lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 595-606.
[1] WU X D, WANG Z X, CHEN L Q, et al. Ag-enhanced SEI formation on Si particles for lithium batteries[J]. Electrochemistry Communications, 2003, 5(11):935-939. [2] KIM J W, RYU J H, LEE K T, et al. Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries[J]. Journal of Power Sources, 2005, 147(1/2):227-233. [3] WANG X H, SUN L M, HU X N, et al. Ni-Si nanosheet network as high performance anode for Li ion batteries[J]. Journal of Power Sources, 2015, 280(2):393-396. [4] LIU Y M, CHEN B L, CAO F, et al. One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(43):17083-17086. [5] CHEN D Y, MEI X, JI G, et al. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles[J]. Angewandte Chemie, 2012, 51(10):2409-2413. [6] CHEN H X, XIAO Y, WANG L, et al. Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(16):6657-6662. [7] LI B, YAO F, BAE J J, et al. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries[J]. Scientific Reports, 2015, 5(2):7659. [8] FANG S, SHEN L, XU G, et al. Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6497-6503. [9] JEONG G, KIM J G, PARK M S, et al. Core-shell structured silicon-nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode[J]. ACS Nano, 2014, 8(3):2977-2985. [10] PARK A R, SON D Y, KIM J S, et al. Si/Ti2O3/reduced graphene oxide nanocomposite anodes for lithium-ion batteries with highly enhanced cyclic stability[J]. ACS Applied Materials & Interfaces, 2015, 7(33):18483-18490. [11] CHEN Y, ZENG S, QIAN J, et al. Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3508-3512. [12] YAO Y, LIU N, MCDOWELL M T, et al. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings[J]. Energy & Environmental Science, 2012, 5(7):7927-7930. [13] DU F H, LI B, FU W, et al. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability[J]. Advanced Materials, 2014, 26(35):6145-6150. [14] 刘伯男, 徐泉, 褚赓, 等. 锂离子电池高容量硅碳负极材料研究进展[J]. 储能科学与技术, 2016, 5(4):417-421. LIU B N, XU Q, CHU G, et al. Research progress on the nano-Si/C materials with high capacity for lithium-iom battery[J]. Energy Storage Science and Technology, 2016, 5(4):417-421. [15] 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4):443-453. WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):443-453. [16] LIU X H, ZHANG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531. [17] ZHOU X Y, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013, 87(1):663-668. [18] LEE J K, KUNG M C, TRAHEY L, et al. Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance lithium ion battery anodes[J]. Chemistry of Materials, 2011, 21(1):492-500. [19] ZHANG R, DU Y, LI D, et al. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework[J]. Advanced Materials, 2014, 26(39):6749-6755. [20] NG S H, WANG J, WEXLER D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J]. Angewandte Chemie, 2006, 45(41):6896-6899. [21] GU P, CAI R, ZHOU Y, et al. Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis[J]. Electrochimica Acta, 2010, 55(12):3876-3883. [22] LIU Y, WEN Z Y, WANG X Y, et al. Electrochemical behaviors of Si/C composite synthesized from F-containing precursors[J]. Journal of Power Sources, 2009, 189(1):733-737. [23] XU Y H, YIN G P, MA Y L, et al. Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder[J]. Journal of Power Sources, 2010, 195(7):2069-2073. [24] LIU Y, HANAI K, YANG J, et al. Silicon/carbon composites as anode materials for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2004, 7(10):A369-A372. [25] HANAI K, LIU Y, IMANISHI N, et al. Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries[J]. Journal of Power Sources, 2005, 146(1/2):156-160. [26] XU Y, ZHU Y, WANG C, et al. Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(25):9751-9757. [27] JEONG M G, DU H L, ISLAM M, et al. Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries[J]. Nano Letters, 2017, 17(9):5600-5606. [28] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321. [29] ZHANG L, RANJUSHA R, GUO H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries[J]. Advanced Functional Materials, 2016, 26(3):440-446. [30] LIU N, LU Z D, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3):187-192. [31] ZHANG Y, ZHANG X G, ZHANG H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J]. Electrochimica Acta, 2006, 51(23):4994-5000. [32] ZHOU Z, XU Y, LIU W, et al. High capacity Si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries[J]. Journal of Alloys & Compounds, 2010, 493(1):636-639. [33] GAO P F, NULI Y, HE Y S, et al. Direct scattered growth of MWCNT on Si for high performance anode material in Li-ion batteries[J]. Chemical Communications, 2010, 46(48):9149-9151. [34] GOHIER A, LAIK B, KIM K H, et al. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries[J]. Advanced Materials, 2012, 24(19):2592-2597. [35] YUE X, SUN W, ZHANG J, et al. Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries[J]. Journal of Power Sources, 2016, 329:422-427. [36] CHANG P, LIU X X, ZHAO Q, et al. Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37):31879-31886. [37] KO M, CHAE S, JEONG S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014, 8(8):8591-8599. [38] DING X L, LIU X X, HUANG Y Y, et al. Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials[J]. Nano Energy, 2016, 27:647-657. [39] HOLZAPFEL M, BUQA H, SCHEIFELE W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J]. Chemical Communications, 2005, 12(12):1566-1568. [40] XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7:1601481. [41] LIN N, XU T, LI T, et al. Controllable self-assembly of micro-nanostructured Si-embedded graphite/graphene composite anode for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(45):39318-39325. [42] WANG B, LI X L, ZHANG X, et al. Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes[J]. Advanced Materials, 2013, 25(26):3560-3565. [43] WANG B, LI X L, ZHANG X, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes[J]. ACS Nano, 2013, 7(2):1437-1445. [44] HUANG Z, ZHANG X, REICHE M, et al. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching[J]. Nano Letters, 2008, 8(9):3046-3051. [45] LEE S E, KIM H J, KIM H. Highly robust silicon nanowire/graphene core-shell electrodes without polymeric binders[J]. Nanoscale, 2013, 5(19):8986-8991. [46] PARK M H, KIM M G, JOO J, et al. Silicon nanotube battery anodes[J]. Nano Letters, 2009, 9(11):3844-3847. [47] YOO J K, KIM J, JUNG Y S, et al. Scalable fabrication of silicon nanotubes and their application to energy storage[J]. Advanced Materials, 2012, 24(40):5452-5456. [48] HERTZBERG B, ALEXEEV A, YUSHIN G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space[J]. Journal of the American Chemical Society, 2010, 132(25):8548-8549. [49] CUI L F, HU L, CHOI J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. ACS Nano, 2010, 4(7):3671-3678. [50] CHIU K F, SU S H, LEU H J, et al. Silicon thin film anodes coated on micron carbon-fiber current collectors for lithium ion batteries[J]. Surface & Coatings Technology, 2015, 267:70-74. [51] LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1:15029. [52] KLAUS S, WERNER M. TEM investigation on the structure of amorphous silicon monoxide[J]. Journal of Non-Crystalline Solids, 2003, 320:143-150. [53] GUO C, WANG D, WANg Q, et al. A SiO/graphene nanocomposite as a high stability anode material for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2012, 7(9):8745-8752. [54] PARK C M, CHOI W, HWA Y, et al. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry, 2010, 20:4854-4860. [55] 吴敏昌, 沈龙, 乔永明, 等. SiO/C复合材料在锂离子电池中的应用[J]. 储能科学与技术, 2016, 5(4):422-426. WU M C, SHEN L, QIAO Y M, et al. Application of SiO/C composite anode material for lithium -ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):422-426. [56] KIM J H, SOHN H J, KIM H S, et al. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries[J]. Journal of Power Sources, 2007, 170:456-459. [57] GUO B, SHU J, WANG Z X, et al. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2008, 10:1876-1878. [58] YAO Y, ZHANG J J, XUE L G, et al. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries[J]. Journal of Power Sources, 2011, 196:10240-10243. [59] YUGE R, TODA A, FUKATSU K, et al. Effect of volume expansion on sei covering carbon-coated nano-Si/SiO composite[J]. Journal of the Electrochemical Society, 2013, 160(10):A1789-A1793. [60] KAJITA T, YUGE R, NAKAHARA K, et al. Improvement in cycle performance and clarification of deterioration mechanism of lithium-ion full cells using SiO anodes[J]. Journal of the Electrochemical Society, 2013, 160(10):A1806-A1810. [61] CHOI M J, XIAO Y, HWANG J Y, et al. Novel strategy to improve the Li-storage performance of micro silicon anodes[J]. Journal of Power Sources, 2017, 348:302-310. [62] LU Z, LIU N, LEE H W, et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes[J]. ACS Nano, 2015, 9(3):2540-2547. [63] YI R, ZAI J, DAI F, et al. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J]. Nano Energy, 2014, 6(5):211-218. [64] ZONG L Q, JIN Y, LIU C, et al. Precise perforation and scalable production of Si particles from low-grade sources for high-performance lithium ion battery anodes[J]. Nano Letters, 2016, 16:7210-7215. [65] SU J M, ZHAO J Y, LI L Y, et al. Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes as anode materials for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(21):17807-17813. [66] CHEN S, SHEN L, AKEN P A, et al. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Advanced Materials, 2017, 29(21):1605650. [67] BEAK S H, PARK J S, JEONG Y M, et al. Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery[J]. Journal of Alloys & Compounds, 2016, 660:387-391. [68] LIU Y, CHEN B, CAO F, et al. One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(43):17083-17086. [69] BANG B M, KIM H, SONG H K, et al. Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching[J]. Energy & Environmental Science, 2011, 4(12):5013-5019. [70] XIAO C M, DU N, SHI X X, et al. Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(48):20494-20499. [71] TIAN H, TAN X, XIN F, et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries[J]. Nano Energy, 2015, 11:490-499. [72] HE W, TIAN H, XIN F, et al. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(35):17956-17962. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[5] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[8] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[9] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[10] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[11] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[12] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[13] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[14] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||