Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (3): 506-511.doi: 10.12028/j.issn.2095-4239.2019.0053
Previous Articles Next Articles
WANG Jianglin, XU Xueliang, DING Qingqing, ZHU Junping, MA Yongquan, ZHAO Lei, LIU Xiaowei
Received:
2019-04-08
Revised:
2019-04-10
Online:
2019-05-01
Published:
2019-05-01
CLC Number:
WANG Jianglin, XU Xueliang, DING Qingqing, ZHU Junping, MA Yongquan, ZHAO Lei, LIU Xiaowei. Application and prospect of zinc nickel battery in energy storage technology[J]. Energy Storage Science and Technology, 2019, 8(3): 506-511.
[1] 闫树远. 超细锌酸钙制备及性能研究[D]. 西安:西安科技大学, 2017. YAN Shuyuan. Preparation and properties of ultrafine calcium zinc acid[D]. Xián:Xián University of Science and Technology, 2017. [2] GENG M, NORTHWOOD D O. Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. Int. J. Hydrogen Energy, 2003, 28(6):633-636. [3] MCLARNON F R, CAIRNS E J. The secondary alkaline zinc electrode[J]. J. Electrochem. Soc., 1991, 138(2):645-663. [4] BRONOEL G, MILLOT A, TASSIN N. Development of Ni-Zn cells[J]. J. Power Sources, 1991, 34(3):243-255. [5] JINDRA J. Sealed nickel-zinc cells[J]. J. Power Sources, 1992, 37(3):297-313. [6] YODA S, ISHIHARA K. The advent of battery-based socicties and global environmental in the 21st century[J]. Journal of Power Sources, 1999, 81(81/82):162-269. [7] 解海宁. 电化学储能方式及储能材料综合分析[J]. 智能电网, 2014, 2(7):4-8. XIE Haining. Electrochemical energy storage methods and comprehensive analysis of energy storage materials[J]. Smart Power Grid, 2014, 2(7):4-8 [8] 蒋凯, 李浩秒, 李威, 等. 几类面向电网的储能电池介绍[J]. 电力系统自动化, 2013, 37(1):47-53. JIANG Kai, LI Haomiao, LI Wei, et al. Introduction of several types of energy storage batteries for power grid[J]. Automation of Electric Power System, 2013, 37(1):47-53. [9] 张华民, 张宇, 刘宗浩, 等. 液流储能电池技术研究进展[J]. 化学进展, 2009(11):2334-2339. ZHANG Huaming, ZHANG Yu, LIU Zonghao, et al. Advances in liquid flow energy storage battery technology[J]. Chemical Progress, 2009(11):2334-2339. [10] 张华民. 储能与液流电池技术[J]. 储能科学与技术, 2012, 1(1):58-63. ZHANG Huaming. Energy storage and liquid-flow battery technology[J]. Energy Storage Science and Technology, 2012, 1(1):58-63 [11] 陈衍珍. 锌镍电池新进展[J]. 电源技术, 2000, 24(2):17-20. CHEN Yanzhen. New advances in zinc and nickel batteries[J]. Chinese Journal of Power Source, 2000, 24(2):17-20. [12] 储能产业研究白皮书[R]. 北京:中国能源研究会储能专委会/中关村储能产业技术联盟, 2018. China Energy Storage Alliance. White paper on energy storage industry research[R]. Beijing:China Energy Storage Alliance, 2018 [13] 宁娜. 2018上半年储能行业发展回顾[J]. 能源, 2018, 118(9):28-29. NING Na. A review of energy storage industry development in the first half of 2018[J]. Energy, 2018, 118(9):28-29. [14] 邓一凡. 液流电池储能系统应用与展望[J]. 船电技术, 2017, 37(12):34-38. DENG Yifan. Application and prospect of liquid flow battery energy storage system[J]. Marine Electric & Electronic Engineering, 2017, 37(12):34-38. [15] YAN J, WANG Q, WEI T, et al. Recent adcances inesign and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4):doi:10.1002/aenm.201300816. [16] 赵桐辉. 锌镍二次电池锌负极材料的研究[D]. 新乡:河南师范大学, 2016. ZHAO Tonghui. Study on zinc negative materials in zinc nickel secondary battery[D]. Xinxiang:Henan Normal University, 2016. [17] ZHANG L L, ZHAO X S. Carbon-based matericals as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 28(9):2520-2531. [18] CHENG J, ZHANG L, YANG Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochem. Commun., 2007(9):2639-2642. [19] 龙伟. 锌镍碱性二次电池锌负极活性物质氧化锌的改性研究[D]. 长沙:中南大学, 2013. LONG Wei. Study on the modification of zinc oxide:A zinc negative active substance in zinc nickel alkaline secondary battery[D]. Changsha:Central South University, 2013. [20] 马永泉, 柯克, 顾大明. "铅碳"电池在储能应用方向的概析[J]. 电化学, 2015, 21(5):455-458. MA Yongquan, KE Ke, GU Daming. An analysis of the application direction of lead carbon battery in energy storage[J]. Electrochemistry, 2015, 21(5):455-458. [21] 闫志刚, 唐民洪, 张绍辉. 电动自行车用铅酸动力电池的发展状况[J]. 电池, 2002, 3(1):97-102. YAN Zhigang, TANG Minghong, ZHANG Shaohui. Development of lead-acid powered batteries for electric bicycles[J]. Battery Bimonthly 2002, 3(1):97-102. [22] 程杰, 张立, 杨裕生, 等. 10W级单液流锌/镍电池研制[C]//中国化学会第26届学术年会新能源与能源化学文集, 天津, 2008. CHENG Jie, ZHANG Li, YANG Yusheng, et al. Development of single liquid zinc/nickel battery with 10W[C]//New Energy and Energy Chemistry Collection of the 26th Annual Academic Meeting of the China Chemical Society, Tianjin, 2008. [23] 杨裕生, 蔡生民, 林祖赓, 等. 简述发展大规模蓄电的液流蓄电池[J]. 科技导报, 2006, 24(8):63-66. YANG Yusheng, CAI Shengming, LIN Zhugeng, et al. A brief description of liquid-current batteries for the development of large-scale power storage[J]. Science and Technology Review, 2006, 24(8):63-66. [24] 程杰, 张立. 一种锌镍液流电池:CN 200610109424. 7[P]. 2006-08-15. CHENG Jie, ZHANG Li. A zinc nickel fluid fluid battery:CN 200610109424. 7[P]. 2006-08-15. [25] 刘卫. 锌镍单液流电池储能系统建模与性能分析[D]. 苏州:江苏科技大学, 2018. LIU Wei. Modeling and performance analysis of zinc nickel single liquid flow battery energy storage system[D]. Suzhou:Jiangsu University of Science and Technology, 2018. [26] 赵鹏程, 程杰, 徐艳, 等. 锌镍单液流电池工程化研究进展[C]//中国化学会第29届学术年会, 北京, 2014. [27] 文越华, 程杰, 徐艳, 等. 基体对流动锌酸钾碱液中锌电极沉淀的影响[J]. 高等学校化学学报, 2011, 32(11):2640-2644. WEN Yuehua, CHENG Jie, XU Yan, et al. Effects of substrates on deposition of zinc from flowing alkaline zincate solutions[J]. Chemical Journal of Chinese Universities, 2011, 32(11):2640-2644. [28] 申亚举, 周聪, 程杰, 等. 使用复合树脂隔膜提高锌镍电池的循环性[J]. 绝缘材料, 2018, 51(11):69-79. SHEN Yaju, ZHOU Cong, CHENG Jie, et al. Using composite resin diaphragm to improve the recyclability of zinc-nickel batteries[J]. Insulation, 2018, 51(11):69-79. [29] 张力, 程杰, 杨裕生, 等. 单液流锌镍电池负极性能及电池性能初步研究[J]. 电化学, 2008, 32(3):248-252. ZHANG Li, CHENG Jie, YANG Yusheng, et al. Preliminary study on negative electrode and battery performance of single-liquid zinc nickel battery[J]. Electrochemistry, 2008, 32(3):248-252. [30] ZHANG L, CHENG J, YANG Y S, et al. Study of zinc electrodes for single flow zinc/nickel battery application[J]. J. Power Sources, 2008, 179(1):381-387. [31] CHENG Yuanhui, ZHANG Huamin. Effect of temperature on the performances and in situ polarization analysis of zinc-nickel single flow batteries[J]. Journal of Power Sources, 2014, 249:435-439 [32] CHENG Yuanhui, ZHANG Huamin. Performance gains in single flow zinc-nickel batteries through novel cell configuration[J]. Electrochimica Acta, 2013, 105:618-621 [33] XIAO Min, WANG Yucai, YAO Shouguang, et al. Analysis of internal reaction and mass transfer of Zinc-nickel single flow battery[J]. J. Renewable Sustainable Energy, 2016, 8:064102(1-10) [34] 张华民. 液流电池技术[M]. 北京:化学工业出版社, 2014. ZHANG Huaming. Liquid flow battery technology[M]. Beijing:Chemical Industry Press, 2014. [35] CHENG J, ZHANG L, YANG Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochem. Commun., 2007, 9(11):2639-2642. [36] 王田. 镍基金属化合物的改性合成及其在单液流锌镍电池和赝电容器中的应用研究[D]. 北京:北京化工大学, 2017. WANG Tian. Study on the modified synthesis of nickel-based compounds and its application in single-liquid zinc nickel batteries and pseudo-electric containers[D]. Beijing:Beijing University of Chemical Technology, 2017. [37] 张春, 王建明, 张昭, 等. 钙添加剂对可充锌电极性能的影响[J]. 中国有色金属学报, 2001, 11(5):781-784. ZHANG Chun, WANG Jianming, ZHANG Zhao, et al. Effect of calcium additives on the properties of zinc charged electrodes[J]. Chinese Journal of Non-ferrous Metals, 2001, 11(5):781-784. [38] 李艳. 锌镍电池电极材料氧化锌纳米化与表面包覆及其电化学性能[D]. 杭州:浙江理工大学, 2009. LI Yan. Zinc and nickel battery electrode materials zinc oxide nanometer and surface coating and their electrochemical properties[D]. Hangzhou:Zhejiang University of Technology, 2009. [39] BOGDANOVIC B, HARTWIG T H, SPLIETHOFF B. The development, testing and optimization of energy storage materials based on the MgH2-Mg system[J]. Int. J. Hydrogen Energy, 1993, 18(7):575-589. [40] 郭炳煜. 锂离子电池[M]. 长沙:中南大学出版社, 2002:383-389. GUO Bingyu. Lithium-ion batteries[M]. Changsha:Central South University Press, 2002:383-389. [41] 袁永锋. 锌镍电池电极材料氧化锌纳米化与表面修饰的结构及电化学性能[D]. 杭州:浙江大学, 2007. YUAN Yongfeng, Structure and electrochemical properties of zinc oxide nanocrystallization and surface modification of zinc nickel battery electrode materials[D]. Hangzhou:Zhejiang University, 2007. |
[1] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[2] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[3] | Ziyan ZHANG, Junyan ZHANG. International competition of key energy storage technologies based on high-quality patents [J]. Energy Storage Science and Technology, 2022, 11(1): 321-334. |
[4] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[5] | Zhonghao RAO, Chenzhen LIU, Yutao HUO, Jiateng ZHAO, Changhui LIU. Practice and exploration of teaching for interdisciplinary outstanding and innovative talents training oriented to energy storage technology [J]. Energy Storage Science and Technology, 2021, 10(3): 1206-1212. |
[6] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[7] | MIAO Ping, YAO Zhen, LEMMON John, LIU Qinghua, WANG Baoguo. Current situations and prospects of energy storage batteries [J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. |
[8] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[9] | XIA Xinmao, GUAN Honghao, DING Pengfei, MENG Gaojun. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm [J]. Energy Storage Science and Technology, 2019, 8(3): 551-558. |
[10] | CHEN Rubo. Some thoughts on energy storage system and sponge city [J]. Energy Storage Science and Technology, 2017, 6(S1): 52-. |
[11] | REN Yang1, XIE Yingying1,2, CHEN Zonghai1, MA Zifeng2. Applications of synchrotron X-rays and neutrons diffraction in energy storage materials research [J]. Energy Storage Science and Technology, 2017, 6(5): 855-863. |
[12] | ZHANG Tao1,2, GU Jie1,2, ZHANG Yu3, FANG Chen3. A method of quantifying coupling degree of energy storage technology and standard#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 280-286. |
[13] | XU Shouping, HOU Chaoyong, YANG Shuili. A Li-ion battery management system for large-capacity energy storage [J]. Energy Storage Science and Technology, 2016, 5(1): 69-77. |
[14] | WANG Shuping, XU Tao, GAO Xuenong, FANG Xiaoming, WANG Shuangfeng, ZHANG Zhengguo. Recent progress about expanded graphite matrix composite phase change material for energy storage [J]. Energy Storage Science and Technology, 2014, 3(3): 210-215. |
[15] | LIU Zonghao, ZHANG Huamin, GAO Sujun, MA Xiangkun, LIU Yufeng. The world's largest all-vanadium redox flow battery energy storage system for a wind farm [J]. Energy Storage Science and Technology, 2014, 3(1): 71-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||