Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (1): 70-81.doi: 10.12028/j.issn.2095-4239.2019.0175
Previous Articles Next Articles
GUAN Yibiao1(), SHEN Jinran2, LI Kangle3, GUAN Zhaoruxin3(), ZHOU Shuqin2, GUO Cuijing2, XU Bin3
Received:
2019-07-30
Revised:
2019-08-09
Online:
2020-01-05
Published:
2019-08-09
Contact:
Zhaoruxin GUAN
E-mail:guanyb@epri.sgcc.com.cn;guanzrx@163.com
CLC Number:
GUAN Yibiao, SHEN Jinran, LI Kangle, GUAN Zhaoruxin, ZHOU Shuqin, GUO Cuijing, XU Bin. Application of graphene conductive additives in cathodes of lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 70-81.
1 | 苏方远, 唐睿, 贺艳兵, 等. 用于锂离子电池的石墨烯导电剂: 缘起、现状及展望[J]. 科学通报, 2017, 62(32): 3743-3756. |
SU F Y, TANG R,HE Y B, et al. Graphene conductive additives for lithium ion batteries: Origin, progress and prospect[J]. Chinese Science Bulletin, 2017, 62: 3743-3756. | |
2 | NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
3 | 吕璐, 洪建和, 何岗, 等. 石墨烯在锂离子电池正极材料中应用的进展[J]. 电池, 2012, 42(4): 225-228. |
LU L, HONG J H, HE G, et al. Progress in application of graphene in Li-ion battery cathode materials[J]. Battery Bimonthly, 2012, 42(4): 225-228. | |
4 | KUCINSKIS G,BAJARS G,KLEPERIS J. Graphene in lithium ion battery cathode materials: A review[J]. Journal of Power Sources, 2013, 240: 66-79. |
5 | RAVET N,CHOUINARD Y,MAGNAN J F,et al. Electroactivity of natural and synthetic triphylite[J]. Journal of Power Sources, 2001, 97(1): 503-507. |
6 | SU F Y, YOU C, HE Y B, et al. Flexible and planar graphene conductive additives for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20: 9644-9650. |
7 | LI X L, ZHANG Y L, SONG H F, et al. The comparison of carbon conductive additives with different dimensions on the electrochemical performance of LiFePO4 cathode[J]. International Journal of Electrochemical Science, 2012,7: 711-7120. |
8 | WEI X,GUAN Y,ZHENG X,et al. Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent[J]. Applied Surface Science, 2018, 440: 748-754. |
9 | 黄本赫. 石墨烯在LiFePO4正极材料中的应用[J]. 电池,2019, 49(2): 133-135. |
HUANG B H. Application of graphene in cathode material LiFePO4[J]. Battery Bimonthly, 2019, 49(2): 133-135. | |
10 | LI X, ZHANG X, LI T, et al. Effects of Nano carbon conductive additives on the electrochemical performance of LiCoO2 cathode for lithium ion batteries[J]. Journal of New Materials for Electrochemical Systems,2015, 1: 131-135. |
11 | 邓凌峰, 余开明. 石墨烯改善锂离子电池正极材料LiCoO2电化学性能的研究[J]. 功能材料, 2014, 45: 84-88. |
DENG L F,YU K M. Influence of graphene on the electrochemical performance of LiCoO2 cathode materials for lithium-ion batteries[J]. Journal of Functional Materials, 2014, 45: 84-88. | |
12 | ZHENG J,XIAO J,XU W,et al. Surface and structural stabilities of carbon additives in high voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 227: 211-217. |
13 | LIU T, SUN S, ZANG Z, et al. Effects of graphene with different sizes as conductive additives on the electrochemical performance of a LiFePO4 cathode[J]. RSC Advances, 2017, 7: doi: 10.1039/C7RA02155K. |
14 | JUAREZ-YESCAS C,RAMOS-SÁNCHEZ G,GONZÁLEZ I. Influence of reduced graphene oxides (rGO) at different reduction stages as conductive additive in Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2018, 22: 3225-3233. |
15 | BI H, HUANG F, TANG Y, et al. Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries[J]. Electrochimica Acta, 2013, 88: 414-420. |
16 | SHI Y, WEN L, PEI S, et al. Choice for graphene as conductive additive for cathode of lithium-ion batteries[J]. Journal of Energy Chemistry,2019, 30: 19-26. |
17 | KE L, LYU W, SU F Y, et al. Electrode thickness control: Precondition for quite different functions of graphene conductive additives in LiFePO4 electrode[J]. Carbon, 2015, 92: 311-317. |
18 | TANG R,YUN Q, LYU W,et al. How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries[J]. Carbon, 2016, 103: 356-362. |
19 | TANG J,ZHONG X,LI H,et al. In-situ and selectively laser reduced graphene oxide sheets as excellent conductive additive for high rate capability LiFePO4 lithium ion batteries[J]. Journal of Power Sources, 2019, 412: 677-682. |
20 | CHENG Q. Porous graphene sponge additives for lithium ion batteries with excellent rate capability[J]. Scientific Reports, 2017, 7: doi: 10.1038/s41598-017-01025-7. |
21 | 文芳, 杨波, 黄国家, 等. 石墨烯复合导电剂在锂离子电池中的应用研究进展[J]. 电子元件与材料, 2019, 38(5): 6-13. |
WEN F, YANG B, HUANG G J, et al. Progress in application research of graphene-based conductive additive in lithium ion batteries[J]. Electronic Components and Materials, 2019, 38(5): 6-13. | |
22 | JIANG R,CUI C,MA H. Using graphene nanosheets as a conductive additive to enhance the rate performance of spinel LiMn2O4 cathode material[J]. Physical Chemistry Chemical Physics, 2013, 15(17): 6406-6415. |
23 | ZHANG D,QIAO J,DONG X,et al. Graphene enhanced LiFeBO3/C composites as cathodes for Li-ion batteries[J]. International Journal of Electrochemical Science, 2018, 13: 1744-1753. |
24 | LIU T,ZHAO L,ZHU J,et al. The composite electrode of LiFePO4 cathode materials modified with exfoliated graphene from expanded graphite for high power Li-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(8): 2822-2829. |
25 | 李用, 吕小慧, 苏方远, 等. 石墨烯/炭黑杂化材料: 新型、高效锂离子电池二元导电剂[J]. 新型炭材料, 2015, 30(2): 128-132. |
LI Y, LV X H, SU F Y, et al. A graphene /carbon black hybrid material:A novel binary conductive additive for lithium-ion batteries[J]. New Carbon Materials, 2015, 30(2): 128-132. | |
26 | XU L, LV W, SHI K, et al. Holey graphenes as the conductive additives for LiFePO4 batteries with an excellent rate performance[J]. Carbon, 2019, 149: 257-262. |
27 | 卫震,赵明放,袁卉军. 石墨烯对功率型锂离子电池性能的影响[J]. 山西化工,2013(6): 10-12. |
WEI Z, ZHAO M F, YUAN H J. Effect of graphene to high-rate discharge Li-ion battery performance[J]. Shanxi Chemical Industry, 2013(6): 10-12. | |
28 | SU F Y,HE Y B,LI B,et al. Could graphene construct an effective conducting network in a high-power lithium ion battery?[J]. Nano Energy, 2012, 1: 429-439. |
29 | 何湘柱, 邓忠德, 胡燚, 等. 石墨烯纳米片导电剂对LiMn2O4电化学性能的影响[J]. 电源技术, 2018, 42(7): 951-954. |
HE X Z,DENG Z D,HU Y,et al. Effect of graphene nanosheets conductive agent on electrochemical performance of LiMn2O4 batteries [J]. Chinese Journal of Power Sources, 2018, 42(7): 951-954. | |
30 | 高坡,张彦林,颜健. 石墨烯/碳纳米管复合导电剂对LiNi1/3Co1/3Mn1/3O2的影响[J]. 电池, 2017, 476): 339-342. |
GAO P,ZHANG Y L,YAN J. Effects of graphene/carbon nanotube composite conductive agent to LiNi1/3Co1/3Mn1/3O2[J]. Battery Bimonthly, 2017, 47(6): 339-342. | |
31 | CHEN W C,HSIEH C Y,WENG Y T,et al. Effects of a graphene nanosheet conductive additive on the high-capacity lithium-excess manganese-nickel oxide cathodes of lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2014, 44(11): 1171-1177. |
32 | 何湘柱, 胡燚, 邓忠德, 等. 石墨烯复合导电剂SP/CNTs/G对LiNi0.5Co0.2Mn0.3O2锂离子电池性能影响[J]. 电子元件与材料, 2016, 35(11): 77-82. |
HE X Z, HU Y, DENG Z D, et al. Effect of graphene composite conductive agent SP/CNTs/G on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Electronic Components and Materials, 2016, 35(11): 77-82. | |
33 | CHEN X, LU W, CHEN C, et al. Improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode with different carbon additives for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2018, 13: 296-304. |
34 | ILANGO P R,GNANAMUTHUR,JO Y N,et al. Design and electrochemical investigation of a novel graphene oxide-silver joint conductive agent on LiFePO4 cathodes in rechargeable lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 121-124. |
35 | 文芳, 杨波, 黄国家, 等. 石墨烯复合导电剂在锂离子电池中的应用研究进展[J]. 电子元件与材料, 2019, 38(5): 6-13. |
WEN F, YANG B, HUANG G J, et al. Progress in application research of graphene-based conductive additive in lithium ion batteries[J]. Electronic Components and Materials, 2019, 38(5): 6-13. |
[1] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[2] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[3] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[4] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[5] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[6] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[7] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[8] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[9] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[10] | Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 462-469. |
[11] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[12] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[13] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[14] | Min LI, Jiayuan XIANG, Donghui YANG, Yuping WANG, Dong CHEN, Jian CHEN, Jiangping TU. Effect of carbon-coated Al foil on properties of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1714-1719. |
[15] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||