储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 821-835.doi: 10.19799/j.cnki.2095-4239.2021.0057

• 固态离子学与储能专刊 • 上一篇    下一篇

含硅负极在硫化物全固态电池中的应用

闫汶琳1,2,3,4(), 吴凡1,2,3,4(), 李泓1,2,3,4, 陈立泉1,2,3,4   

  1. 1.天目湖先进储能技术研究院
    2.中国科学院物理所长三角研究中心,江苏 溧阳 213300
    3.中国科学院物理研究所,清洁能源实验室,北京市新能源材料与器件重点实验室,凝聚态物理国家实验室,北京 100190
    4.中国科学院大学,北京 100049
  • 收稿日期:2021-02-07 修回日期:2021-02-22 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 吴凡 E-mail:1152841213@qq.com;fwu@iphy.ac.cn
  • 作者简介:闫汶琳(1997—),女,硕士研究生,主要研究方向为含Si负极在硫化物全固态电池中的应用,E-mail:1152841213@qq.com
  • 基金资助:
    江苏省科技厅重点研发计划重点项目(BE2020003);国家自然科学基金重点项目-汽车联合基金(U1964205);国家自然科学基金项目(51972334);北京市自然科学基金面上项目(2202058);中国科学院海外杰出人才引进计划,中科院物理所长三角物理研究中心和天目湖先进储能技术研究院“科学家工作室”研发项目(TIES-SS0001)

Application of Si-based anodes in sulfide solid-state batteries

Wenlin YAN1,2,3,4(), Fan WU1,2,3,4(), Hong LI1,2,3,4, Liquan CHEN1,2,3,4   

  1. 1.Tianmu Lake Institute of Advanced Energy Storage Technologies
    2.Yangtze River Delta Physics Research Center, Liyang 213300, Jiangsu, China
    3.Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-02-07 Revised:2021-02-22 Online:2021-05-05 Published:2021-04-30
  • Contact: Fan WU E-mail:1152841213@qq.com;fwu@iphy.ac.cn

摘要:

硫化物固态电解质具有超高离子电导率和优良力学性能,是实现全固态电池最有希望的技术路线之一。为进一步提高硫化物全固态电池的能量密度,促进其应用,理论比容量接近石墨10倍(3759 mA·h/g)的硅负极材料具有极佳的应用前景。并且Si负极和硫化物固态电解质结合,可规避Si负极在液态电池中重复生成固态电解质界面层(SEI)的问题,充分发挥Si负极的高容量,同时利用硫化物较好的力学性能缓冲硅负极巨大的体积膨胀,改善固固接触,促进离子扩散,有望实现高能量密度电池的长效循环。虽然含Si负极硫化物全固态电池极具实用前景,但是目前研究尚处于起步阶段,缺少成熟有效的表征手段和对基础科学问题的深入理解,全电池性能较差、容量衰减过快、比能量还有很大提升空间。为加速推进含Si负极硫化物全固态电池的研究进程,本文总结了近年来该领域的相关工作,分类论述了3种类型的含Si负极硫化物全固态电池(粉饼电池、湿法涂覆电池、薄膜电池),综合分析了影响其性能的关键因素,并阐明通过减小Si的颗粒尺寸、外加应力、设置合适的截止电压、调控硫化物电解质的杨氏模量等手段可以有效优化含Si负极硫化物全固态电池的性能。最后,本文分析了目前该领域面临的问题和挑战,指出未来发展趋势。

关键词: 硫化物, 固态电解质, 含硅负极, 全固态电池

Abstract:

Sulfide is one of the most promising solid electrolytes to realize all-solid-state batteries for its superior ionic conductivity and excellent mechanical properties. The Si-based anode with a high theoretical specific capacity (3759 mA·h/g, ~10 times that of graphite) is a promising candidate to further increase the energy density of sulfide all-solid-state for wide applications. Moreover, the combination of Si-based anode and sulfide solid electrolyte can be used to improve the interfacial solid-solid contact and ion transportation using mechanically soft sulfides to accommodate huge volume expansion of silicon-based anodes, thus achieving a high capacity and suppressing repetitive the solid-electrolyte-interphase formation to realize long-cycle high-energy density batteries. However, despite the promising advantages of Si-based anode sulfide all-solid-state batteries, effective characterization methods and in-depth understanding of basic scientific issues in this field are still missing, presenting poor full-battery performance, fast decay of capacity, and low energy density. This paper summarizes the related work/progress in this field and elaborates the three types of Si-based anode sulfide all-solid-state batteries (pellet, wet coating, and thin film). Moreover, the key factors influencing battery performances, such as Si particle size, external stress, appropriate cut-off voltage, and Young's modulus of sulfide electrolytes, are comprehensively analyzed. Finally, the current problems and challenges in this field are proposed for its benign development in the future.

Key words: sulfide, solid-state electrolyte, Si-based anode, all-solid-state batteries

中图分类号: