1 |
ALPTEKIN E, EZAN M A. Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions[J]. Applied Thermal Engineering, 2020, 164: doi: 10.1016/j.applthermaleng.2019.114423.
|
2 |
SUNKU PRASAD J, MUTHUKUMAR P, DESAI F, et al. A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied Energy, 2019, 254: doi: 10.1016/j.apenergy.2019.113733.
|
3 |
BENITEZ-GUERRERO M, VALVERDE J M, SANCHEZ-JIMENEZ P E, et al. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in concentrated solar power plants[J]. Solar Energy, 2017, 153: 188-199.
|
4 |
CEYLAN İ, ALI I H G, ERGÜN A, et al. A new hybrid system design for thermal energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1300-1308.
|
5 |
ABEDIN A H. A critical review of thermochemical energy storage systems[J]. The Open Renewable Energy Journal, 2011, 4(1): 42-46.
|
6 |
GIL A, MEDRANO M, MARTORELL I, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55.
|
7 |
PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610.
|
8 |
DIZAJI H B, HOSSEINI H. A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 9-26.
|
9 |
RANDHIR K, KING K, RHODES N, et al. Magnesium-manganese oxides for high temperature thermochemical energy storage[J]. Journal of Energy Storage, 2019, 21: 599-610.
|
10 |
AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: Redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers[J]. Solar Energy, 2015, 114: 440-458.
|
11 |
CARRILLO A J, MOYA J, BAYÓN A, et al. Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones[J]. Solar Energy Materials and Solar Cells, 2014, 123: 47-57.
|
12 |
STAFF P. Thermochemical heat storage for concentrated solar power[R]. Office of Scientific and Technical Information (OSTI), 2011.
|
13 |
HUTCHINGS K N, WILSON M, LARSEN P A, et al. Kinetic and thermodynamic considerations for oxygen absorption/desorption using cobalt oxide[J]. Solid State Ionics, 2006, 177(1/2): 45-51.
|
14 |
TESCARI S, AGRAFIOTIS C, BREUER S, et al. Thermochemical solar energy storage via redox oxides: Materials and reactor/heat exchanger concepts[J]. Energy Procedia, 2014, 49: 1034-1043.
|
15 |
KARAGIANNAKIS G, PAGKOURA C, ZYGOGIANNI A, et al. Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants[J]. Energy Procedia, 2014, 49: 820-829.
|
16 |
BLOCK T, SCHMÜCKER M. Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems[J]. Solar Energy, 2016, 126: 195-207.
|
17 |
AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: Testing of cobalt oxide-based powders[J]. Solar Energy, 2014, 102: 189-211.
|
18 |
CARRILLO A J, SASTRE D, SERRANO D P, et al. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(11): 8039-8048.
|
19 |
BLOCK T, KNOBLAUCH N, SCHMÜCKER M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material[J]. Thermochimica Acta, 2014, 577: 25-32.
|
20 |
SCHRADER A J, MUROYAMA A P, LOUTZENHISER P G. Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions: Thermodynamic analysis[J]. Solar Energy, 2015, 118: 485-495.
|
21 |
VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.
|
22 |
KHAWAM A, FLANAGAN D R. Solid-state kinetic models: Basics and mathematical fundamentals[J]. The Journal of Physical Chemistry B, 2006, 110(35): 17315-17328.
|
23 |
GOTOR F J, CRIADO J M, MALEK J, et al. Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments[J]. The Journal of Physical Chemistry A, 2000, 104(46): 10777-10782.
|
24 |
FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C: Polymer Symposia, 2007, 6(1): 183-195.
|
25 |
PÉREZ-MAQUEDA L A, CRIADO J M, SÁNCHEZ-JIMÉNEZ P E. Combined kinetic analysis of solid-state reactions: A powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism[J]. The Journal of Physical Chemistry A, 2006, 110(45): 12456-12462.
|