储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 1008-1025.doi: 10.12028/j.issn.2095-4239.2017.00022
王其钰,王 朔,张杰男,郑杰允,禹习谦,李 泓
收稿日期:
2017-06-01
修回日期:
2017-06-15
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
禹习谦,副研究员,从事电池材料与器件的同步辐射表征,锂离子电池失效与逆向分析。E-mail:xyu@iphy.ac.cn。
作者简介:
王其钰(1987—),男,博士,研究方向为锂电池失效分析与逆向分析,E-mail:qyway10@iphy.ac.cn;
基金资助:
WANG Qiyu, WANG Shuo, ZHANG Jienan, ZHENG Jieyun, YU Xiqian, LI Hong
Received:
2017-06-01
Revised:
2017-06-15
Online:
2017-09-01
Published:
2017-09-01
摘要: 商业化的锂离子电池在使用或储存过程中常出现某些失效现象,包括容量衰减、内阻增大、倍率性能降低、产气、漏液、短路、变形、热失控、析锂等,严重降低了锂离子电池的使用性能、一致性、可靠性、安全性。这些失效现象是由电池内部一系列复杂的化学和物理机制相互作用引起的。对失效现象的正确分析和理解对锂离子电池性能的提升和技术改进有着重要作用。锂离子电池失效分析是以电池的失效现象为起点,针对该现象选择适当的测试分析手段,设计合理、有效的失效分析流程,挖掘电池在材料制备和制造工艺层面上的失效主要原因,并能提供相关可靠有效的优化建议。本文综述了锂离子电池的失效现象及其失效机理、失效分析常见的测试分析方法、失效分析流程的设计,并列举了容量衰减、热失控和产气等方面相关分析案例进行说明。
王其钰,王 朔,张杰男,郑杰允,禹习谦,李 泓. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025.
WANG Qiyu, WANG Shuo, ZHANG Jienan, ZHENG Jieyun, YU Xiqian, LI Hong. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
[1] SUN Y K. Future of electrochemical energy storage[J]. ACS Energy Letters, 2017, 2(3): 716-716. [2] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science. 2011, 4(9): 3243-3262. [3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. [4] SCHLASZA C, OSTERTAG P, CHRENKO D, et al. Review on the aging mechanisms in Li-ion batteries for electric vehicles based on the FMEA method[C]. Transportation Electrification Conference and Expo. IEEE, 2014: 1-6. [5] KOKSBANG R, BARKER J, SHI H, et al. Cathode materials for lithium rocking chair batteries[J]. Solid State Ionics, 1996, 84(1-2): 1-21. [6] 李伟善, 邱仕洲. 锂离子电池容量衰减的原因分析[J]. 电池工业, 2001, 6(1): 21-24. LI Weishan, QIU Shizhou.Causes for capacity decrease of Li ion batteries[J]. Chinese Battery Industry, 2001, 6(1): 21-24. [7] WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources, 2004, 127(1-2): 58-64. [8] GUMMOW R J, KOCK A D, THACKERAY M M. Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells[J]. Solid State Ionics, 1994, 69(1): 59-67. [9] THACKERAY M M, SHAOHORN Y, KAHAIAN A J, et al. Structural fatigue in spinel electrodes in high voltage (4 V) Li/LixMn2O4 cells[J]. Electrochemical and Solid-State Letters, 1998, 1(1): 7-9. [10] LEE E S, NAM K W, HU E, et al. Influence of cation ordering and lattice distortion on the charge-discharge behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V[J]. Chemistry of Materials, 2015, 24(18): 3610-3620. [11] WANG H, JANG Y I, HUANG B, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. Journal of the Electrochemical Society. 1999, 146(2): 473-480. [12] ARORA P, WHITE RE, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998,145(10): 3647-3667. [13] BOUKAMP B A, LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of The Electrochemical Society. 1981,128(4): 725-729. [14] 罗飞, 褚赓, 黄杰,等. 锂离子电池基础科学问题(Ⅷ)—负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163. LUO Fei, CHU Geng, HUANG Jie, et al. Fundamental scientific aspects of lithium batteries (Ⅷ) —Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163. [15] SLOOP S E, PUGH J K, WANG S, et al. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid-State Letters, 2004, 4(4): A42-A44. [16] 刘亚利, 吴娇杨, 李泓. 锂离子电池基础科学问题(Ⅸ)—非水液体电解质材料[J]. 储能科学与技术, 2014, 3(3): 262-282. LIU Yali, WU Jiaoyang, LI Hong. Fundamental scientific aspects of lithium ion batteries (Ⅸ) —Nonaqueous electrolyte materials[J].. Energy Storage Science and Technology, 2014, 3(3): 262-282. [17] MURPHY S J, GRIGAHCÈNE A, NIEMCZURA E, et al. Corrosion of lithium-ion battery current collectors[J]. Journal of the Electrochemical Society, 1999, 146(2): 448-456. [18] XING Y, WILLIARD N, TSUI K L, et al. A comparative review of prognostics-based reliability methods for Lithium batteries[C]. Prognostics and System Health Management Conference. IEEE, 2011: 1-6. [19] 阚永春. 富锂锰基镍锰钴氧化物正极材料电压衰减机理的研究[D]. 合肥:中国科学技术大学, 2015. KAN Yongchun.Voltage fade mechanism study of lithium- manganese-rich nickel manganese cobalt oxides[D]. Hefei: University of Science and Technology of China, 2015. [20] SANTHANAGOPALAN S, RAMADASS P, ZHANG J. Analysis of internal short-circuit in a lithium ion cell [J]. Journal of Power Sources, 2009, 194(1): 550-557. [21] WU M S, CHIANG P C J, LIN J C, et al. Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests-short-circuit tests[J]. Electrochimica Acta, 2004, 49(11): 1803-1812. [22] GREVE L, FEHRENBACH C. Mechanical testing and macro- mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells[J]. Journal of Power Sources, 2012, 214(4): 377-385. [23] PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153. [24] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51(25): 5334-5340. [25] KIM S H, CHOI K H, CHO S J, et al. Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(16): 4949-4955. [26] AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3-4): 405-416. [27] GUO R, LU L, OUYANG M, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248. [28] 颜雪冬, 马兴立, 李维义, 等. 浅析软包装锂离子电池胀气问题[J]. 电源技术, 2013, 37(9): 1536-1538. YAN Xuedong, MA Xingli, LI Weiyi, et al. Analysis of swollen problem in soft packing lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(9): 1536-1538. [29] 黄丽, 金明钢, 蔡惠群, 等. 聚合物锂离子电池不同化成电压下产生气体的研究[J]. 电化学, 2003, 9(4): 387-392. HUANG Li , JIN Minggang , CAI Huiqun, et al. Study on the gas generation in different charging voltage during formation process in polymer lithium-ion battery[J]. Electrochemistry, 2003, 9(4): 387-392. [30] 陈益奎, 张世杰, 史鹏飞, 等. 聚合物锂离子蓄电池化成气体自动消失现象[J]. 电源技术, 2006, 30(12): 964-967. CHEN Yikui, ZHANG Shijie, SHI Pengfei, et al. Gas disappearing during polymer lithium battery's formation[J]. Chinese Journal of Power Sources, 2006, 30(12): 964-967. [31] YANG L, TAKAHASHI M, WANG B. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234. [32] 徐淑银, 刘燕燕, 高飞, 等. 钛酸锂储能电池胀气机理研究进展[J]. 硅酸盐学报, 2015, 43(5): 657-664. XU Shuyin, LIU Yanyan, GAO Fei, et al. Development of gas generation in Li4Ti5O12-based stationary batteries[J]. Journal of The Chinese Ceramic Society, 2015, 43(5): 657-664. [33] KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, s81/82(9): 715-719. [34] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208(24): 210-224. [35] JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO2, and Li(Ni1/3Co1/3Mn1/3)O2, batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100(4): 127-131. [36] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. [37] THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. [38] LAMB J, ORENDORFF C J. Evaluation of mechanical abuse techniques in lithium ion batteries[J]. Journal of Power Sources, 2014, 247(2): 189-196. [39] 欧阳陈志, 梁波, 刘燕平, 等. 锂离子动力电池热安全性研究进展[J]. 电源技术, 2014, 38(2): 382-385. OUYANG Chenzhi, LIANG Bo, LIU Yan-ping, et al. Progress of thermal safety characteristics batteries[J]. Chinese Journal of Power Sources, 2014, 38(2): 382-385. [40] MCSHANE S J, HLAVAC M, BERTNESS K. Method and apparatus for detection and control of thermal runaway in a battery under charge: US5574355[P]. 1996. [41] 平平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究[D]. 合肥:中国科学技术大学, 2014. PING Ping. Lithium ion battery thermal runaway and fire risk analysis and the development on the safer battery system [D]. Hefei: University of Science and Technology of China, 2014. [42] PARK J K. Principles and applications of lithium secondary batteries[M]. New York: WILEY-VCH, 2012. [43] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A Review[J]. Chem. Rev., 2017. [44] 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 6: 607-616. ZHANG Jianbo, SU Laisuo, LI Xinyu, et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry, 2016, 6: 607-616. [45] 李文俊, 褚赓, 彭佳悦,等. 锂离子电池基础科学问题(Ⅻ)—表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667. LI Wenju, CHU Geng, PENG Jiayue, et al. Fundamental scientific aspects of lithium batteries(Ⅻ) —Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667. [46] 凌仕刚, 吴娇杨, 张舒, 等. 锂离子电池基础科学问题(Ⅻ)—电化学测量方法[J]. 储能科学与技术, 2015, 4(1): 83-103. LING Shigang, WU Jiaoyang, ZHANG Shu, et al. Fundamental scientific aspects of lithium ion batteries(Ⅻ) —Electrochemical measurement[J]. Energy Storage Science and Technology, 2015, 4(1): 83-103. [47] WALDMANN T, ITURRONDOBEITIA A, KASPER M, et al. Review—Post-mortem analysis of aged lithium-ion batteries: Disassembly methodology and physico-chemical analysis techniques[J]. Journal of The Electrochemical Society, 2016,163(10): A2149- A2164. [48] CASTAING R, MOREAU P, REYNIER Y, et al. NMR quantitative analysis of solid electrolyte interphase on aged Li-ion battery electrodes[J]. Electrochimica Acta, 2015, 155: 391-395. [49] YUFIT V, SHEARING P, HAMILTON R W, et al. Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography[J]. Electrochemistry Communications, 2011, 13(6): 608-610. [50] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 30912 . [51] SENYSHYN A, MÜHLBAUER M J, NIKOLOWSKI K, et al. “In-operando” neutron scattering studies on Li-ion batteries[J]. Journal of Power Sources, 2012, 203(203): 126-129. [52] GONG Y, ZHANG J, JIANG L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017: 4274-4277. [53] SHI J L, ZHANG J N, HE M, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20138-20146. [54] 沈馨, 张睿, 程新兵,等. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. SHEN Xin, ZHANG Rui, CHENG Xinbing, et al. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. [55] BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005,139(1-2): 295-303. [56] WANG T, PEI L, WANG T, et al. Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis[J]. Journal of Power Sources, 2016,301: 187-193. [57] BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. [58] 刘文刚, 周波, 王晓丹,等. 18650型锂离子电池的循环容量衰减研究[J]. 电源技术, 2012, 36(3): 306-309. LIU Wengang, ZHOU Bo, WANG Xiaodan, et al. Capacity fading of 18650 Li-ion cells with cycling[J]. Chinese Journal of Power Sources, 2012, 36(3): 306-309. [59] LANG M, DARMA M S D, KLEINER K, et al. Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O2-LiNi0.5Co0.2Mn0.3O2- LiMn2O4/graphite lithium ion batteries[J]. Journal of Power Sources, 2016, 326: 397-409. [60] 李贺, 于申军, 陈志奎,等. 锂离子电池内部短路失效的反应机理研究[J]. 电化学, 2010(2): 185-191. LI He, YU Shenjun, CHEN Zhi-kui, et al. Failure reaction mechanism of internal short-circuit for lithium-ion batteries[J]. Electrochemistry, 2010(2): 185-191. [61] YAYATHI S, WALKER W, DOUGHTY D, et al. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications[J]. Journal of Power Sources, 2016, 329: 197-206. [62] HE M, CASTEL E, LAUMANN A, et al. In situ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures[J]. Journal of The Electrochemical Society, 2015,162(6): A870-A876. [63] KONG W, LI H, HUANG X, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1): 285-291. [64] ZHANG H L, SUN C H, LI F, et al. New insight into the interaction between propylene carbonate-based electrolytes and graphite anode material for lithium ion batteries[J]. Journal of Physical Chemistry C, 2007, 111(12): 4740-4748. [65] ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources, 2006, 160 (2): 1349-1354. [66] WALDMANN T, WILKA M, KASPEr M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries e A Post-Mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. [67] ZHANG Lingling, MA Yulin, CHENG Xinqun, et al. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling[J]. Journal of Power Sources, 2016, 329: 255-261. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||