[1] REILLY J, PALTSEV S, FELZER B, et al. Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone[J]. Energy Policy, 2007, 35(11): 5370-5383.
[2] HADJIEVA M M, BOZUKOV M, GUTZOV I. Next generation phase change materials as multifunctional watery suspension for heat transport and heat storage[C]//MRS Proceedings. UK: Cambridge University Press, 2009.
[3] HADJIEVA M, BOZUKOV M, TSACHEVA T. Thermal stability control of microencapsulated salt/graphite composite for thermal storage application[M]//Proceedings of ISES World Congress 2007 (Vol. I – Vol. V). Springer Berlin Heidelberg, 2008: 2698-2702.
[4] ACEM Z, LOPEZ J, BARRIO E P D. KNO3/NaNO3-graphite materials for thermal energy storage at high temperature: Part I.—Elaboration methods and thermal properties[J]. Applied Thermal Engineering, 2010, 30(13): 1580-1585.
[5] LOPEZ J, ACEM Z, BARRIO E P D. KNO3/NaNO3-graphite materials for thermal energy storage at high temperature: Part II—Phase transition properties[J]. Applied Thermal Engineering, 2010, 30(13): 1586-1593.
[6] PILLONI M, ENNAS G, CABRAS V, et al. Thermal and structural characterization of ultrasonicated BiSn alloy in the eutectic composition[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(3): 1543-1551.
[7] TSAO L C. Suppressing effect of 0.5% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging[J]. Journal of Alloys & Compounds, 2011, 509: 8441-8448.
[8] WANG S H, CHIN T S, YANG C F, et al. Pb-free solder-alloy based on Sn-Zn-Bi with the addition of germanium[J]. Journal of Alloys & Compounds, 2010, 497(1/2): 428-431.
[9] EL-DALY A A, SWILEM Y, MAKLED M H, et al. Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys[J]. Journal of Alloys & Compounds, 2009, 484(1/2): 134-142.
[10] GAIN A K, ZHANG L. Microstructure, thermal analysis and damping properties of Ag and Ni nano-particles doped Sn-8Zn-3Bi solder on OSP-Cu substrate[J]. Journal of Alloys and Compounds, 2014, 617: 779-786.
[11] SHEN J, PU Y, YIN H, et al. Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys[J]. Journal of Alloys & Compounds, 2014, 614(10): 63-70.
[12] OSÓRIO W R, PEIXOTO L C, GARCIA L R, et al. Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys[J]. Journal of Alloys & Compounds, 2013, 572(36): 97-106.
[13] YANG C F, CHEN F L, GIERLOTKA W, et al. Thermodynamic properties and phase equilibria of Sn-Bi-Zn ternary alloys[J]. Materials Chemistry & Physics, 2008, 112(1): 94-103.
[14] NOOR E E M, SHARIF N M, YEW C K, et al. Wettability and strength of In-Bi-Sn lead-free solder alloy on copper substrate[J]. Journal of Alloys & Compounds, 2010, 507(1): 290-296.
[15] YEH C H, CHANG L S, STRAUMAL B B. Wetting transition of grain boundaries in the Sn-rich part of the Sn-Bi phase diagram[J]. Journal of Materials Science, 2011, 46(5): 1557-1562.
[16] ZHANG Q K, LONG W M, YU X Q, et al. Effects of Ga addition on microstructure and properties of Sn-Ag-Cu/Cu solder joints[J]. Journal of Alloys and Compounds, 2015, 622: 973-978.
[17] MA D, WU P. Improved microstructure and mechanical properties for Sn58Bi0.7Zn solder joint by addition of graphene nanosheets[J]. Journal of Alloys and Compounds, 2016, 671: 127-136.
[18] PROKHORENKO V Y, ROSHCHUPKIN V V, POKRASIN M A, et al. Liquid gallium: Potential uses as a heat-transfer agent[J]. High Temperature, 2000, 38(6): 954-968.
[19] ZHANG J, HOSEMANN P, MALOY S. Models of liquid metal corrosion[J]. Journal of Nuclear Materials, 2010, 404(1): 82-96.
[20] YUAN J, ZHANG K, ZHANG X, et al. Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity[J]. Journal of Alloys & Compounds, 2013, 578(6): 32-36.
[21] BARIN I, KNACKE O, KUBASCHEWSKI O. Thermochemical properties of inorganic substances[M]. Germany: Springer-Verlag, 1973.
[22] VIZDAL J, BRAGA M H, KROUPA A, et al. Thermodynamic assessment of the Bi-Sn-Zn System[J]. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2007, 31(4): 438-448.
|