储能科学与技术 ›› 2018, Vol. 7 ›› Issue (5): 783-793.doi: 10.12028/j.issn.2095-4239.2018.0014
张剀, 徐旸, 董金平, 张小章
收稿日期:
2018-01-24
修回日期:
2018-03-09
出版日期:
2018-09-01
发布日期:
2018-03-23
通讯作者:
徐旸,副研究员,主要研究方向为电磁轴承,高速旋转机械,E-mail:xuxu@mail.tsinghua.edu.cn
作者简介:
张剀(1977-),男,副研究员,主要研究方向为电磁轴承,高速旋转机械,E-mail:zhangkai@mail.tsinghua.edu.cn
基金资助:
ZHANG Kai, XU Yang, DONG Jinping, ZHANG Xiaozhang
Received:
2018-01-24
Revised:
2018-03-09
Online:
2018-09-01
Published:
2018-03-23
Contact:
10.12028/j.issn.2095-4239.2018.0014
About author:
2018-03-23
摘要: 主动磁轴承作为一种先进的支承技术,在飞轮储能系统中得到了成功应用。本文首先介绍了国内外研究机构在飞轮系统中应用主动磁轴承的情况。之后,分别探讨了主动磁轴承应用于高速飞轮需要解决的各个关键技术问题,展望了它在高速飞轮系统中的应用前景。
中图分类号:
张剀, 徐旸, 董金平, 张小章. 储能飞轮中的主动磁轴承技术[J]. 储能科学与技术, 2018, 7(5): 783-793.
ZHANG Kai, XU Yang, DONG Jinping, ZHANG Xiaozhang. Application of active magnetic bearings in flywheel systems[J]. Energy Storage Science and Technology, 2018, 7(5): 783-793.
[1] SCHWEITZER G, BLEULER H, TRAXLER A. Active magnetic bearings-basics, properties and application of active magnetic bearings[M]. ETH, Switzerland:Hochschulverlag A G, 1994. [2] SCHWERTZER G, MASLEN E. Magnetic bearings theory, design, and application to rotating machinery[M]. Berlin:Springer, 2009. [3] PAUL A. Magnetic bearings-A primer[C]//Proceedings of 27th Turbomachinery Symposium, Texas A & M University, USA, 1998. [4] 白城均, 宋方臻, 邵海燕. 磁力轴承的发展及应用[J]. 济南大学学报(自然科学版), 2007, 21(4):325-331. BAI C, SONG F, SHAO H. Development and application of magnetic bearings[J]. Journal of University of Jinan(Sci.&Tech.), 2007, 21(4):325-331. [5] HAWKINS L, MURPHY B, ZIERER J. Shock and vibration testing of an AMB supported energy storage flywheel[J]. JSME Int. J., Ser. C, 2003, 46(2):429-435. [6] FLYNN M. A methodology for evaluating and reducing rotor losses, heating, and operational limitations of high-speed flywheel batteries[D]. Austin:The University of Texas, 2003. [7] PALAZZOLO A, JOHNSON C, THOMAS E, et al. Zero gravity test of a 40,000 r/min flywheel[C]//Proceedings of the 13th International Symposium on Magnetic Bearings, Arlington, VA, USA, 2012. [8] ARKADIUSZ M, ZDZISLAW G. Energy save robust control of active magnetic bearings in flywheel[C]//Proceedings of the 12th International Symposium on Magnetic Bearings, Wuhan, China, 2010. [9] SHIMIZU F, NONAMI K. Benchmark and verification of control algorithm for flywheel with active magnetic bearing on electric vehicle and proposal of new SAC algorithm (epsilon-1 modification and bias variable gamma-p approach)[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [10] RACHMANTO B, NONAMI K, HIURA Y, KAGAMⅡSHI T. Variable bias type AMB flywheel powered electric vehicle without any touchdown against load disturbance[C]//Proceedings of the 12th International Symposium on Magnetic Bearings, Wuhan, China, 2010. [11] KAGAMⅡSHI T, RACHMANTO B, HIURA Y, et al. Optimized design for AMB based flywheel energy storage and power conversion systems[C]//Proceedings of the 12th International Symposium on Magnetic Bearings, Wuhan, China, 2010. [12] YOU D, JANG S, LEE J, et al. Dynamic performance estimation of high-power FESS using the operating torque of a PM synchronous motor/generator[J]. IEEE Trans. Magnetics, 2008, 44(11):4155-4158. [13] MICHAEL S, THOMAS R, ENRICO B, et al. The challenges of miniaturisation for a magnetic bearing wheel[C]//Proceedings of the 9th European Space Mechanisms and Tribology Symposium, Liege, France, 2001. [14] QUURCK L, SCHAEDE H, RICHTER M, et al. High speed backup bearings for outer-rotor-type flywheels-proposed test rig design[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [15] LORENZ F, WERNER R. Comparison of magnetic bearings and hybrid roller bearings in a mobile flywheel energy storage[C]//Proceedings of the 1st Brazilian Workshop on Magnetic Bearings, Rio de Janeiro, Brazil, 2013. [16] GENTA G. Kinetic energy storage:An ideal application for magnetic bearings[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [17] ABRAHAMSSON J, BERNHOFF H. Magnetic bearings in kinetic energy storage systems for vehicular applications[J]. Journal of Electrical Systems, 2011, 7(13):225-236. [18] LYU X, DI L, YOON S, et al. Emulation of energy storage flywheels on a rotor-AMB test rig[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [19] HINTERDORFER T, SCHULZ A, SIMA H, et al. Topology optimization of a flywheel energy storage rotor using a genetic algorithm[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [20] AHRENS M, KUCERA L. Modal analysis and vibration behaviour of a magnetically suspended flywheel energy storage device[C]//ISMA 21, Noise and Vibration Engineering Conf., Leuwen, Belgium, 1996, 9:18-20. [21] 张剀, 赵雷, 赵鸿宾. 电磁力超前控制在磁悬浮飞轮中的应用[J]. 机械工程学报, 2004, 40(7):175-179. ZHANG K, ZHAO L, ZHAO H. Application of magnetic force lead control on a flywheel suspended by AMBs[J]. Chinese Journal of Mechanical Engineering, 2004, 40(7):175-179. [22] 白金刚, 张小章, 张剀, 等. 磁悬浮储能飞轮系统中的磁轴承参数辨识[J]. 清华大学学报(自然科学版), 2008, 48(3):382-390. BAI J, ZHANG X, ZHANG K, et al. Parameter identification for active magnetic bearings in energy storage flywheel[J]. Journal of Tsinghua University(Science and Technology), 2008, 48(3):382-390. [23] 白金刚, 赵雷, 张剀, 等. 复合材料储能飞轮挠性结构振动的磁轴承控制[J]. 机械工程学报, 2016, 52(8):36-42. BAI J G, ZHAO L, ZHANG K, et al. Vibration control by AMBs for composite material energy storage flywheel with flexible structure[J]. Chinese Journal of Mechanical Engineering, 2016, 52(8):36-42. [24] 韩邦成, 张姝娜, 房建成, 等. 磁悬浮反作用飞轮系统模态分析及试验研究[J]. 系统仿真学报, 2008, 20(3):763-766. HAN B C, ZHANG S N, FANG J C, et al. Modal analysis and experiment study of magnetically suspended reaction flywheel[J]. Journal of System Simulation, 2008, 20(3):763-766. [25] 韩邦成, 虎刚, 房建成, 等. 50 Nms磁悬浮反作用飞轮转子优化设计方法的研究[J]. 宇航学报, 2006, 27(3):536-540. HAN B C, HU G, FANG J C, et al. Optimization design of magnetic bearing reaction wheel rotor[J]. Journal of Astronautics, 2006, 27(3):536-540. [26] 侯二永, 刘昆, 单小强. 扁平型外转子混合磁悬浮飞轮动力学分析[J]. 宇航学报, 2011, 32(5):998-1004. HOU E Y,LIU K,SHAN X Q. Analysis of dynamics characteristics of hybrid magnetic suspension flywheel with oblate external rotor[J]. Journal of Astronautics, 2011, 32(5):998-1004. [27] 章琦, 祝长生. 电磁悬浮飞轮转子系统的模态解耦控制[J]. 振动工程学报, 2012, 25(3):302-310. ZHANG Q, ZHU C S. Modal decoupling control for active magnetic bearing-supported flywheel rotor system[J]. Journal of Vibration Engineering, 2012, 25(3):302-310. [28] CHRISTOPHER D, BEACH R. FIywheel technology development program for aerospace applications[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(6):9-14. [29] RALPH H. flywheel integrated power and attitude control system demonstrated with flywheels G2 and D1[R]. Cleveland:NASA/TM-2005-213419, E-14945, 2005, 10:95-96. [30] ANAND D, KIRK J, AMOOD R, et al. System considerations for magnetically suspended flywheel systems[C]//Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, San Diego, California, USA, 1986. [31] KIRK J, ANAND D. Overview of a flywheel stack energy storage system[C]//Proceedings of the Twenty-third Intersociety Energy Conversion Engineering Conference, ASME, Denver, CO, USA, 1988. [32] BRIAN C. Control designs for low-loss active magnetic bearings:theory and implementation[D]. Atlanta:School of Electrical and Computer Engineering, Georgia Institute of Technology, 2004. [33] KERRY L, RALPH H, JERRY F, et al. Aerospace flywheel technology development for IPACS applications[R]. Cleveland:NASA/TM 2001-2110936, 2001, 10:5-6. [34] MATTHEW T, BRIAN T, JOHN D. Spin commissioning and drop tests of a 130 kW-hr composite flywheel[C]//Proceedings of the 9th International Symposium on Magnetic Bearings, Lexington, Kentucky, USA, 2004. [35] YEONKYU K. Integrated power and attitude control of a rigid satellite with onboard magnetic bearing suspended rigid flywheels[D]. Texas:A&M University, 2003. [36] STUDER P. Magnetic bearings for instruments in the space environment[R]. NASA TM-78048, 1978. [37] ROBINSON A. A lightweight, low-cost, magnetic bearing reaction wheel for satellite attitude control applications[J]. ESA Journal, 1982(4):397-406. [38] AUER W. Ball bearing versus magnetic bearing reaction and momentum wheels as momentum actuators[C]//AIAA International Meeting & Technical Display "Global Technology 2000", 1980, 5:1-6. [39] MURAKAMI C, OHKAMI Y, OKAMOTO O, et al. A new type of magnetic gimballed momentum wheel and its application to attitude control in space[J]. Acta Astronautica, 1984, 11(9):613-619. [40] HE Y, NONAMI K, SHIMIZU F. A method of simple adaptive control for MIMO nonlinear AMB-flywheel levitation system[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [41] SUGINO M, NAGASHIMA K, OGATA M, et al. The development of the flywheel energy storage system applying the high temperature superconducting magnetic bearing-The examination of a demonstration machine by having it charged/discharged with solar photovoltaic power[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [42] KOSHIZUKA N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C, 2006, 445/448:1103-1108. [43] ZHAO L, ZHANG K, ZHU R, et al. Experimental research on a momentum wheel suspended by active magnetic bearings[C]//Proceedings of the Eighth International Symposium on Magnetic Bearings. Mito, Ibaraki-Pref., Japan, 2002. [44] 张剀. 磁悬浮动量轮系统研究[D]. 北京:清华大学, 2005. ZHANG K. Investigations of the moment wheel system suspended by active magnetic bearings[D]. Beijing:Tsinghua University, 2005. [45] 赵建辉. 单框架控制力矩陀螺磁悬浮支承系统关键技术研究[D]. 北京:北京航空航天大学, 2002. ZHAO Jianhui. Research on key technology of magnetic suspension systems for single gimbal control moment gyroscope[D]. Beijing:Beijing University of Aeronautics & Astronautics, 2002. [46] 吴刚. 混合磁轴承飞轮系统设计与控制方法研究[D]. 长沙:国防科技大学, 2006. WU G. Study on system design and control methods of hybrid magnetic bearing momentum flywheel[D]. Changsha:National University of Defense Technology, 2006. [47] 田占元, 祝长生, 王玎. 飞轮储能用高速永磁电机转子的涡流损耗[J]. 浙江大学学报(工学版), 2011, 45(3):451-457. TIAN Z Y, ZHU C S, WANG D. Rotor eddy current loss in high speed permanent magnet motors for flywheel energy storage system[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(3):451-457. [48] 汤双清. 飞轮电池磁悬浮支承系统理论及应用研究[D]. 武汉:华中科技大学, 2003. YANG S Q. Research on theory of magnetic suspension supporting system and application for flywheel battery[D]. Wuhan:Huazhong University of Science & Technology, 2003. [49] 向楠. 磁悬浮飞轮电池支承控制系统研究[D]. 武汉:武汉理工大学, 2012. XIANG N. Research on the bearing-supported control system of magnetic bearing flywheel battery[D]. Wuhan:Wuhan University of Technology, 2012. [50] JIANG S, JU L. Study on electromechanical coupling nonlinear vibration of flywheel energy storage system[J]. Science in China:Series E Technologyical Sciences, 2006, 49(1):61-77. [51] 张剀, 赵雷, 赵鸿宾. 磁轴承飞轮控制系统设计中LQR方法的应用研究[J]. 机械工程学报, 2004, 40(2):127-131. ZHANG K, ZHAO L, ZHAO H B. LQR method research on control of the flywheel system suspended by AMBs[J]. Chinese Journal of Mechanical Engineering, 2004, 40(2):127-131. [52] 张剀, 张小章, 赵雷, 等. 磁悬浮飞轮陀螺力学与控制原理[J]. 机械工程学报, 2007, 43(3):102-106. ZHANG K, ZHANG X Z, ZHAO L, et al. Gyroscopic dynamics and control principles of flywheels supported by active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3):102-106. [53] 白金刚. 储能飞轮磁轴承系统研究[D]. 北京:清华大学, 2007. BAI J G. Investigations of active magnetic bearings for the flywheel energy storage system[D]. Beijing:Tsinghua University, 2007. [54] 董淑成, 房建成, 俞文伯. 基于PID控制的主动磁轴承-飞轮转子系统运动稳定性研究[J]. 宇航学报, 2005, 26(3):296-300. DONG S C, FANG J C, YU W B. Study on dynamic stability of flywheel rotor supported by amb based on PID controller[J]. Journal of Astronautics, 2005, 26(3):296-300. [55] 田希晖, 房建成, 刘刚. 一种磁悬浮飞轮增益预调交叉反馈控制方法[J]. 北京航空航天大学学报, 2006, 32(11):1299-1303. TIAN X H, FANG J C, LIU G. Gain scheduling cross feedback control approach for magnetic suspend ing flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11):1299-1303. [56] 孙津济, 房建成. 磁悬浮飞轮用新型永磁偏置径向磁轴承的设计[J]. 轴承, 2008(3):8-13. SUN J J, FANG J C. Design on new permanent magnet biased radial magnetic bearing in magnetic suspending flywheel[J]. Bearing, 2008(3):8-13. [57] 房建成, 杨磊, 孙津济, 等. 一种新型磁悬浮飞轮用永磁偏置径向磁轴承[J]. 光学精密工程, 2008, 16(3):444-451. FANG J C, YANG L, SUN J J, et al. Novel permanent-magnet bias radial magnetic bearing used in magnetical suspended flywheel[J]. Optics and Precision Engineering, 2008, 16(3):444-451. [58] 吴刚, 刘昆, 张育林, 等. 磁悬浮动量轮设计与实验研究[J]. 轴承, 2005(8):4-7. WU G,LIU K, ZHANG Y L, et al. Design and experimental study on magnetic suspended momentum wheels[J]. Bearing, 2005(8):4-7. [59] 张立, 刘昆. 基于FPGA的飞轮磁轴承一体化控制系统设计[J]. 电机与控制学报, 2012, 16(4):84-90. ZHANG L, LIU K. Integrated control system design of magnetic bearings for flywheel based on FPGA[J]. Electric Machines and Control, 2012, 16(4):84-90. [60] 毛川, 祝长生. 主动电磁轴承-刚性转子系统实时变步长迭代不平衡补偿[J]. 中国电机工程学报, 2017, 29:1-8. MAO C, ZHU C S. A real-time variable step size iterative unbalance compensation for active magnetic bearing-rigid rotor systems[J]. Proceedings of the CSEE, 2017, 29:1-8. [61] 汤双清, 蔡敢为, 杨家军, 等. 用于飞轮电池的电动磁力轴承的研究[J]. 华中科技大学学报(自然科学版), 2003, 31(4):9-11. TANG S Q, CAI G W, YANG J J, et al. Suspension mechanism and stability of electrodynamic magnetic bearings[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2003, 31(4):9-11. [62] 汪勋超. 碳纤维复合材料飞轮的设计[D]. 武汉:武汉理工大学, 2013. WANG X. The design of carbon fiber composite flywheel[D]. Wuhan:Wuhan University of Technology, 2013. [63] 王抗. 飞轮储能用高效磁轴承的基础研究[D]. 南京:东南大学, 2015. WANG K. Study on high efficiency magnetic bearing for flywheel energy storage[D]. Nanjing:Southeast University, 2015. [64] FILATOV A, HAWKINS L. Combination axial and radial active magnetic bearing with improved axial bandwidth[C]//ASME Turbo Expo 2012, Copenhagen, Denmark, 2012. [65] BONFITTO A, TONOLI A, AMATI N, et al. Turbomolecular pumps on active conical magnetic bearings[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [66] JASTRZEBSKI R, JAATINEN P, CHIBA A. Efficiency of buried permanent magnet type 5 kW and 50 kW high-speed bearingless motors with 4-pole motor windings and 2-pole suspension windings[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [67] ZHANG K, DAI X, DONG J. An energy storage flywheel supported by hybrid bearings[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [68] AHRENS M, KUCERA L, LARSONNEUR R. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):494-502. [69] AHRENS M, KUCERA L. Cross feedback control of a magnetic bearing system controller design considering gyroscopic effects[C]//Proceedings of the Third International Symposium on Magnetic Bearings, Alexandria, Virginia, USA, 1996. [70] SCHOENHOFF U, LUO J, LI G, et al. Implementation results of mu-synthesis control for energy storage flywheel test rig[C]//Proceedings of the Seventh International Symposium on Magnetic Bearings, ETH Zurich, Switzerland, 2000. [71] 张剀, 张小章, 赵雷, 等. 磁悬浮飞轮结构模态振动控制[J]. 机械工程学报, 2007, 43(6):220-225. ZHANG K, ZHANG X Z, ZHAO L, et al. Structure eigen vibration control of flywheel suspended by active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2007, 43(6):220-225. [72] 张剀, 赵雷, 赵鸿宾. 磁悬浮飞轮低功耗控制方法仿真研究[J]. 清华大学学报(自然科学版), 2004, 44(3):301-303. ZHANG K, ZHAO L, ZHAO H B. Zero-power control method for a flywheel suspended by active magnetic bearings[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(3):301-303. [73] HAWKINS L, MURPHY B, KAJS J. Analysis and testing of a magnetic bearing energy storage flywheel with gain-scheduled, MIMO Control[C]//ASME 2000-GT-405, Presented at ASME IGTI Conference, Munich, Germany:2000. [74] 张剀, 张小章. 磁轴承不平衡控制技术的研究进展[J]. 中国机械工程, 2010, 8:897-903. ZHANG K, ZHANG X. A review of unbalance control technology of active magnetic bearings[J]. China Mechanical Engineering, 2010, 8:897-903. [75] DARBANDI S, HABIBOLLAHI A, BEHZAD M, et al. Sensor runout compensation in active magnetic bearings via an integral adaptive observer[J]. Control Engineering Practice, 2016, 48(3):111-118. [76] AHRENS M, KUCERA L, LARSONNEUR R. Field experiences with a highly unbalanced magnetically suspended flywheel rotor[C]//Proceedings of the Fifth International. Symposium on Magnetic Bearings, Kanazawa, Japan, 1996. [77] 石庆才, 谢振宇, 吴凯锋, 等. 同极型和异极型磁轴承的磁场分布和功率损耗分析[J]. 机械设计, 2011, 28(11):22-27. SHI Q C, XIE Z Y, WU K F, et al. Analysis on electromagnetic field and power loss of homopolar and heteropolar magnetic bearing[J]. Journal of Machine Design, 2011, 28(11):22-27. [78] HAWKINS L, FLYNN M. Influence of control strategy on measured actuator power consumption in an energy storage flywheel with magnetic bearings[C]//Proc. of the 6th Intl. Symp. on Magnetic Suspension Tech, Turin, Italy, 2001. [79] 王晓峰, 姚光晔. 高速旋转机械转子发黑层热老化寿命研究[C]//核工业第七届可靠性研究成果专刊论文集, 北京, 2004. [80] MCMULLEN P, VUONG V, HAWKINS L. Flywheel energy storage system with AMB's and hybrid backup bearings[C]//Proceedings of the 10th International Symposium on Magnetic Bearings, Martigny, Switzerland, 2006. [81] LI P, SAHINKAYA N, KEOGH P. Active touchdown bearing control for recovery of contact-free rotor levitation in AMB systems[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [82] 杨雷, 杨国军, 时振刚. 基于拟静力学方法的HTR-10磁轴承氦风机辅助轴承抗冲击特性研究[J]. 核动力工程, 2016(1):152-156. YANG L, YANG G J, SHI Z G. Research on impact properties of auxiliary bearings in HTR-10 AMB helium circulator based on quasi-static method[J]. Nuclear Power Engineering, 2016(1):152-156. [83] CAO J, ALLAIRE P, DIMOND T, et al. Rotor drop analyses and auxiliary bearing system optimization for AMB supported rotor-part ii:Experiment and optimization[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [84] HALMINEN O, ACEITUNO J, ESCALONA J, et al. Models for dynamic analysis of backup ball bearings of an AMB-system[J]. Mechanical Systems and Signal Processing, 2017, 95(10):324-344. [85] FONSECA C, SANTOS I, WEBER H. Experimental comparison of the nonlinear dynamic behavior of a rigid rotor interacting with two types of different radial backup bearings:Ball & pinned[J]. Tribology International, 2018, 119(3):250-261. [86] NA U. Fault tolerance of homopolar magnetic bearings[J]. Journal of Sound and Vibration, 2004, 272:495-511. [87] SCHWEITZER G. Safety and reliability aspects for active magnetic bearing applications-A survey[C]//In Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2005, 219(6):383-392.> [77] 石庆才, 谢振宇, 吴凯锋, 章淑锳. 同极型和异极型磁轴承的磁场分布和功率损耗分析[J]. 机械设计, 2011, 28(11):22-27. SHI Q, XIE Z, WU K, etc. Analysis on electromagnetic field and power loss of homopolar and heteropolar magnetic bearing[J]. Journal of Machine Design, 2011, 28(11):22-27. [78] HAWKINS L, FLYNN M. Influence of control strategy on measured actuator power consumption in an energy storage flywheel with magnetic bearings[C]. In Proc. of the 6th Intl. Symp. on Magnetic Suspension Tech, Turin, Italy, 2001.10. [79] 王晓峰, 姚光晔. 高速旋转机械转子发黑层热老化寿命研究[C]. 核工业第七届可靠性研究成果专刊论文集, 2004.6. [80] MCMULLEN P, VUONG V, HAWKINS L. Flywheel energy storage system with AMB's and hybrid backup bearings[C]. In Proceedings of the 10th International Symposium on Magnetic Bearings, Martigny, Switzerland, 2006.8. [81] LI P, SAHINKAYA N, KEOGH P. Active touchdown bearing control for recovery of contact-free rotor levitation in AMB systems[C]. In Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014.8. [82] 杨雷, 杨国军, 时振刚. 基于拟静力学方法的HTR-10磁轴承氦风机辅助轴承抗冲击特性研究[J]. 核动力工程, 2016(1):152-156. YANG L, YANG G, SHI Z. Research on impact properties of auxiliary bearings in HTR-10 AMB helium circulator based on quasi-static method[J]. Nuclear Power Engineering, 2016(1):152-156. [83] CAO J, ALLAIRE P, DIMOND T, RENSBURG J. Rotor drop analyses and auxiliary bearing system optimization for AMB supported rotor-part ii:experiment and optimization[C]. In Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016.8. [84] HALMINEN O, ACEITUNO J, ESCALONA J, SOPANEN J, MIKKOLA A. Models for dynamic analysis of backup ball bearings of an AMB-system[J]. Mechanical Systems and Signal Processing, 2017, 95(10):324-344. [85] FONSECA C, SANTOS I, WEBER H. Experimental comparison of the nonlinear dynamic behavior of a rigid rotor interacting with two types of different radial backup bearings:ball & pinned[J]. Tribology International, 2018119(3):250-261. [86] NA U. Fault tolerance of homopolar magnetic bearings[J]. Journal of Sound and Vibration, 2004, 272:495-511. [87] SCHWEITZER G. Safety and reliability aspects for active magnetic bearing applications-a survey[C]. In Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2005, 219(6):383-392. |
[1] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[2] | 高峻泽, 柳亦兵, 周传迪, 何海婷, 武鑫. 飞轮用永磁悬浮轴承的磁路设计及磁力解析模型[J]. 储能科学与技术, 2022, 11(5): 1437-1445. |
[3] | 周勇, 陈香玉, 简霖, 王扶辉, 田德高, 韩传军. 游梁式抽油机飞轮储能系统设计及实验[J]. 储能科学与技术, 2022, 11(2): 593-599. |
[4] | 李树胜, 王佳良, 李光军, 汪大春, 崔亚东. MW级飞轮阵列在风光储能基地示范应用[J]. 储能科学与技术, 2022, 11(2): 583-592. |
[5] | 陈玉龙, 武鑫, 滕伟, 柳亦兵. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. |
[6] | 于苏杭, 郭文勇, 滕玉平, 桑文举, 蔡洋, 田晨雨. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术, 2021, 10(5): 1631-1642. |
[7] | 贾翔宇, 汪军水, 徐旸, 张剀. 接触参数对储能飞轮转子碰摩行为的影响[J]. 储能科学与技术, 2021, 10(5): 1643-1649. |
[8] | 戴兴建, 胡东旭, 张志来, 陈海生, 朱阳历. 高强合金钢飞轮转子材料结构分析与应用[J]. 储能科学与技术, 2021, 10(5): 1667-1673. |
[9] | 张兴, 阮鹏, 张柳丽, 田刚领, 祝保红. 飞轮储能装置性能测试[J]. 储能科学与技术, 2021, 10(5): 1674-1678. |
[10] | 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686. |
[11] | 李红, 储江伟, 孙术发, 李宏刚. 车载电磁耦合飞轮储能系统的特性[J]. 储能科学与技术, 2021, 10(5): 1687-1693. |
[12] | 张兴, 阮鹏, 张柳丽, 李娟, 田刚领, 胡东旭, 祝保红. 飞轮储能在华中区域火电调频中的应用分析[J]. 储能科学与技术, 2021, 10(5): 1694-1700. |
[13] | 兰晨, 李文艳. 两种变厚度空心储能飞轮的应力特性[J]. 储能科学与技术, 2021, 10(3): 1080-1087. |
[14] | 祝保红, 李光军, 李树胜, 崔亚东. 基于储能飞轮的油井发电机功率补偿与节能应用[J]. 储能科学与技术, 2021, 10(3): 1088-1094. |
[15] | 李红, 储江伟, 孙术发, 刘贺. 车用飞轮混合动力系统的应用进展[J]. 储能科学与技术, 2021, 10(2): 534-543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||