[1] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy Environ. Sci., 2011, 4 (9):3243-3262.
[2] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22 (3):587-603.
[3] 夏永高, 刘兆平. 锂离子电池高容量富锂锰基正极材料研究进展[J]. 储能科学与技术, 2016, 5 (3):384-387. XIA Y G, LIU Z P. Research progress on the Li-excess Mn-based cathode materials with high capacity for lithium-ion battery[J]. Energy Storage Science and Technology, 2016, 5 (3):384-387.
[4] 李泓. 锂离子电池基础科学问题 (XV)——总结和展望[J]. 储能科学与技术, 2015, 4 (3):306-318. LI H. Fundamental scientific aspects of lithium ion batteries (XV)-Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4 (3):306-318.
[5] 肖伟, 巩亚群, 王红, 等. 锂离子电池隔膜技术进展[J]. 储能科学与技术, 2016, 5 (2):188-196. XIAO W, GONG Y Q, WANG H, et al. Research progress of separators for lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5 (2):188-196.
[6] DAI M, SHEN J X, ZHANG J Y, et al. A novel separator material consisting of ZeoliticImidazolate Framework-4 (ZIF-4) and its electrochemical performance for lithium-ions battery[J]. J. Power Sources, 2017, 369:27-34.
[7] ARORA P, ZHANG Z M. Battery separators[J]. Chem. Rev., 2004, 104 (10):4419-4462.
[8] 王畅, 吴大勇. 锂离子电池隔膜及技术进展[J]. 储能科学与技术, 2016, 5 (2):120-128. WANG C, WU D. LIB separators and the recent technical progress[J]. Energy Storage Science and Technology, 2016, 5 (2):120-128.
[9] LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy Environ. Sci., 2014, 7 (12):3857-3886.
[10] ZHU X M, JIANG X Y, AI X P, et al. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries[J]. J. Membr. Sci., 2016, 504:97-103.
[11] ZHANG Y C, WANG Z H, XIANG H F, et al. A thin inorganic composite separator for lithium-ion batteries[J]. J. Membr. Sci., 2016, 509:19-26.
[12] XIE Y, ZOU H L, XIANG H F, et al. Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes[J]. J. Membr. Sci., 2016, 503:25-30.
[13] WANG Y, WANG S Q, FANG J Q, et al. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries[J]. J. Membr. Sci., 2017, 537:248-254.
[14] XIANG H F, CHEN J J, LI Z, et al. An inorganic membrane as a separator for lithium-ion battery[J]. J. Power Sources, 2011, 196:8651-8655.
[15] YANILMAZ M, LU Y, ZHU J D, et al. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries[J]. J. Power Sources, 2016, 313:205-212.
[16] LIANG X X, YANG Y, JIN X, et al. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery[J]. J. Membr. Sci., 2015, 493:1-7.
[17] FASCIANI C, PANERO S, HASSOUN J, et al. Novel configuration of poly (vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries[J]. J. Power Sources, 2015, 294:180-186.
[18] LUO X Y, LIAO Y H, ZHU Y M, et al. Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries[J]. J. Power Sources, 2017, 348:229-238.
[19] SHI C, ZHANG P, CHEN L X, et al. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries[J]. J. Power Sources, 2014, 270:547-553.
[20] MIAO R Y, LIU B W, ZHU Z Z, et al. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries[J]. J. Power Sources, 2008, 184 (2):420-426.
[21] DENG Y M, SONG X N, MA Z, et al. Al2O3/PVdF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety[J]. Electrochim. Acta, 2016, 212:416-425.
[22] KIM K J, KWON H K, PARK M S, et al. Ceramic composite separators coated with moisturized ZrO2 nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries[J]. Phys. Chem.Chem. Phys., 2014, 16 (20):9337-9343.
[23] DONG F, BEN L, STEVE A, et al. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries[J]. J. Power Sources, 2012, 206 (1):325-333.
[24] CHO J, JUNG Y C, LEE Y S, et al. High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries[J]. J. Membr. Sci., 2017, 535:151-157.
[25] ZHANG S S, XU K, FOSTER D L, et al. Microporous gel electrolyte Li-ion battery[J]. J. Power. Sources., 2004, 125 (1):114-118.
[26] LEE Y, LEE H, LEE T, et al. Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries[J]. J. Power Sources, 2015, 294:537-544.
[27] YU L H, JIN Y, LIN Y S. Ceramic coated polypropylene separators for lithium-ion batteries with improved safety:Effects of high melting point organic binder[J]. RSC Adv., 2016, 6 (46):40002-40009.
[28] SHI C, DAI J H, SHEN X, et al. A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries[J]. J. Membr. Sci., 2016, 517:91-99.
[29] YANG P T, ZHANG P, SHI C, et al. The functional separator coated with core-shell structured silica-poly (methyl methacrylate) sub-microspheres for lithium-ion batteries[J]. J. Membr. Sci., 2015, 474:148-155. |