[1] MAIER J. Physical chemistry of ionic materials:Ions and electrons in solids[M]. New Jersey:John Wiley & Sons, 2004.
[2] AGRAWAL R, GUPTA R. Superionic solid:Composite electrolyte phase-An overview[J]. Journal of Materials Science, 1999, 34(6):1131-1162.
[3] 郑浩, 高健, 王少飞, 等. 锂电池基础科学问题(VI)——离子在固体中的输运[J]. 储能科学与技术, 2013, 2(6):620-635. ZHENG Hao, GAO Jian, WANG Shaofei, et al. Fundamental scientific aspects of lithium batteries (VI)-Ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6):620-635.
[4] 王少飞. 锂电池固体电解质材料的研究[D]. 北京:中国科学院物理研究所, 2014. WANG S F. Investigation on solid state electrolyte materials for lithium battery[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2014.
[5] 高健. 若干锂离子固体电解质中的离子输运问题研究[D]. 北京:中国科学院物理研究所, 2015. GAO J. Investigation on ion transport in several lithium ion solid electrolytes[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2015.
[6] 杨勇. 固态电化学[M]. 北京:化学工业出版社, 2016. YANG Y. Solid state electrochemistry[M]. Beijing:Chemistry Industry Press, 2016.
[7] WANG S, YAN M, LI Y, et al. Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides[J]. Journal of Power Sources, 2018, 393:75-82.
[8] 张恒. 含双(氟磺酰)亚胺阴离子的纯固态聚合物电解质的制备、表征及性质[D]. 武汉:华中科技大学, 2015. ZHANG H. Solid polymer electrolytes based on bis(fluorosulfonyl) imide anion:Synthesis, characterization, and properties[D]. Wuhan:Huazhong University of Science & Technology, 2015.
[9] 应风晔. Ba0.5Sr0.5Co0.8Fe0.2O3-δ混合导体导电性能研究[D]. 上海:上海大学, 2007. YING F Y. Research on conductivity of mixed Conductors-Ba0.5Sr0.5Co0.8Fe0.2O3-δ[D]. Shanghai:Shanghai University, 2007.
[10] BUSCHMANN H, DOLLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12"[J]. Phys. Chem. Chem. Phys., 2011, 13(43):19378-19392.
[11] 凌仕刚, 许洁茹, 李泓. 锂电池研究中的EIS实验测量和分析方法[J]. 储能科学与技术, 2018, 7(4):732-750. LING S G, XU J R, LI H. Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4):732-750.
[12] WESTPHAL B G, MAINUSCH N, MEYER C, et al. Influence of high intensive dry mixing and calendering on relative electrode resistivity determined via an advanced two point approach[J]. Journal of Energy Storage, 2017, 11:76-85.
[13] BARSOUKOV E, MACDONALD J R. Impedance spectroscopy theory, experiment, and applications[M]. 2nd Ed. USA:John Wiley & Sons, 2005.
[14] 曹楚南, 张鉴清. 交流阻抗法导论[M]. 北京:科学出版社, 2002. CAO C N, ZHANG J Q. An introduction to electrochemistry impedance spectroscopy[M]. Beijing:Science Press, 2002.
[15] HEBB M H. Electrical conductivity of silver sulfide[J]. The Journal of Chemical Physics, 1952, 20:185-190.
[16] WAGNER C. Galvanische zellen mit festen elektrolyten gemischter stromleitung[J]. Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie, 1956, 60:4-7.
[17] FRENNING G, STR MME M. Theoretical derivation of the isothermal transient ionic current in an ion conductor:Migration, diffusion, and space-charge effects[J]. Journal of Applied Physics, 2001, 90(11):5570-5575.
[18] WATANABE M, RIKUKAWA M, SANUI K, et al. Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method[J]. Journal of Applied Physics, 1985, 58(2):736-740.
[19] 郑浩. 全固态锂空气电池和新型薄膜固态电解质研究[D]. 北京:中国科学院物理研究所, 2015. ZHENG H. Studies on the solid state Lithium air battery and a new thin film solid state electrolyte[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2015.
[20] HAILE S M, WEST D L, CAMPBELL J. The role of microstructure and processing on the proton conducting properties of Gadolinium-doped barium cerate[J]. Journal of Materials Research, 1998, 13(6):1576-1595.
[21] AGRAWAL R C, KATHAL K, GUPTA R K. Estimation of energies of Ag+ ion formation and migration using transient ionic current (TIC) technique[J]. Solid State Ionics, 1994, 74:137-140.
[22] AMIN R, MAIER J, BALAYA P, et al. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique[J]. Solid State Ionics, 2008, 179(27/32):1683-1687.
[23] ZUGMANN S, FLEISCHMANN M, AMERELLER M, et al. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study[J]. Electrochimica Acta, 2011, 56(11):3926-3933.
[24] ABRAHAM K M, JIANG Z, CARROLL B. Highly conductive PEO-like polymer electrolytes[J]. Chemistry of Materials, 1997, 9:1978-1988.
[25] NIEDZICKI L, KASPRZYK M, KUZIAK K. Liquid electrolytes based on new lithium conductive imidazole salts[J]. Journal of Power Sources, 2011, 196(3):1386-1391.
[26] SAKUDA A, HAYASHI A, TATSUMISAGO M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013(3):2261-2265.
[27] 程琥. 锂二次电池聚合物电解质的制备、表征及其相关界面性质研究[D]. 厦门:厦门大学, 2007. CHENG H. Synthesis, characterization and their interfacial properties of polymer electrolytes for secondary lithium batteries[D]. Xiamen:Xiamen University, 2007.
[28] KIM S, HIRAYAMA M, TAMINATO S. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte[J]. Dalton Transactions, 2013, 42(36):13112-13117.
[29] LOBE S, DELLEN C, FINSTERBUSCH M. Radio frequency magnetron sputtering of Li7La3Z2O12 thin films for solid-state batteries[J]. Journal of Power Sources, 2016, 307:684-689.
[30] SU Y, FALGENHAUER J, POLITY A. LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering[J]. Solid State Ionics, 2015, 282:63-69.
[31] HUGGINS R A. Simple method to determine electronic and ionic conductivity of the components in mixed conductors-A review[J]. Ionics, 2002(8):300-313.
[32] UHLMANN C, BRAUN P, ILLIG J, et al. Interface and grain boundary resistance of a lithium lanthanum titanate (Li3-xLa2/3-xTiO3, LLTO) solid electrolyte[J]. Journal of Power Sources, 2016, 307:578-586.
[33] 张杰男. 电压钴酸锂的失效分析与改性研究[D]. 北京:中国科学院物理研究所, 2018. ZHANG J N. Failure analysis and modification research on high voltage LiCoO2[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2018.
[34] IRVINE J T, SINCLAIR D C, WEST A R. Electroceramics:characterization by impedance spectroscopy[J]. Advanced Materials, 1990, 3(2):132-138.
[35] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9):682-686.
[36] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in Poly(ethylene oxide)[J]. Nano Letters, 2015, 16(1):459-465.
[37] AMIN R, BALAYA P, MAIER J. Anisotropy of electronic and ionic transport in LiFePO4 single crystals[J]. Electrochemical and Solid-State Letters, 2007, 10(1):A13-A16.
[38] AMIN R, CHIANG Y M. Characterization of electronic and ionic transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a function of Li content[J]. Journal of the Electrochemical Society, 2016,163(8):A1512-A1517.
[39] PATEL R L, PARK J, LIANG X H. Ionic and electronic conductivities of atomic layer deposition thin film coated lithium ion battery cathode particles[J]. RSC Advances, 2016, 6:98768-98776. |