[1] 吴宇平, 万春荣. 锂离子二次电池[M]. 北京:化学工业出版社, 2002. WU Y P, WAN C R. Lithium ion secondary batteries[M]. Beijing:Chemical Industry Press, 2002.
[2] USUI H, DOMI Y, SHIMIZU M, et al. Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery[J]. Journal of Power Sources, 2016, 329:428-431.
[3] HASTIE J W. Molecular basis of flame inhibition[J]. Journal of Research of the Notional Bureau of Standards-A. Physics and Chemistry, 1973, 77A (6):733.
[4] WANG Xianming, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:I. Fundamental properties[J]. Journal of The Electrochemical Society, 2001, 148 (10):A1058-A1065.
[5] KASHIWAGI T, GILMAN J W, BUTLER K M, et al. Flame-retardant mechanism of silica gel/silica[J]. Fire and Materials, 2001, 24 (6):277-289.
[6] ZHANG Shengshui. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006,162 (2):1379-1394.
[7] KALHOFF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries:State of the art and perspectives[J]. ChemSusChem, 2015, 8 (13):2154-2175.
[8] SSHIM E G, NAM T H, KIM J G, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive[J]. Journal of Power Sources, 2007, 172 (2):919-924.
[9] ZHU Qizhen, JING Tingting, CHEN Nan, et al. Study on TPP and DMMP as flame-retardant cosolvent in electrolytes for Li-ion batteries[J]. Transactions of Beijing Institute of Technology, 2015, 10 (35):1096-1100.
[10] HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121:383-387.
[11] WANG Qingsong, SUN Jinhua, YAO Xiaolin, et al. 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2005, 8 (9):A467-A470.
[12] OTA H, KOMINATO A, CHUN W J, et al. Effect of cyclic phosphate additive in non-flammable electrolyte[J]. Journal of Power Sources, 2003, 119/120/121:393-398.
[13] YAO Xiaolin, XIE Shouqi, CHEN Chong, et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144 (1):170-175.
[14] ZHANG Shengshui, XU Kang, JOW T R. A thermal stabilizer for LiPF6-based electrolytes of Li-ion cells[J]. Electrochemical and Solid-State Letters, 2002, 5 (9):A206-A208.
[15] LEE C W, VENKATACHALAPATHY R, PRAKASH J. A novel flame-retardant additive for lithium batteries[J]. Electrochemical and Solid-State Letters, 2000, 3 (2):63-65.
[16] MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81/82:20-26.
[17] KRAUSE F C, SMART M C, PRAKASH G K S. The use of fluorinated electrolytes in lithium-ion batteries for improved safety in human-rated aerospace and terrestrial applications[C]//ECS Meeting, 2013, MA2013-02 (14):1032.
[18] BANKS R E, SMART B E, TATLOW J C. Organofluorine chemistry:Principles and commercial applications[M]. Plenum, 1994.
[19] XU Kang, DING M S, ZHANG Shengshui, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society, 2002, 149 (5):A622-A626.
[20] XU Kang, ZHANG Shengshui, ALLEN J L, et al. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate[J]. Journal of the Electrochemical Society, 2002, 149 (8):A1079-A1082.
[21] XU Kang, DING M S, ZHANG Shengshui, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries:I. Physical and electrochemical properties[J]. Journal of the Electrochemical Society, 2003, 150 (2):A161-A169.
[22] ZHANG Shengshui, XU Kang, JOW T R. Tris (2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003, 113 (1):166-172.
[23] TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. Characteristics of lithium-ion battery with non-flammable electrolyte[J]. Journal of Power Sources, 2009, 189 (1):429-434.
[24] ZHANG Qing, NOGUCHI H, WANG Hongyu, et al. Improved thermal stability of LiCoO2 by cyclotriphosphazene additives in lithium-ion batteries[J]. Chemistry Letters, 2005, 34 (7):1012-1013.
[25] ALLEN C W, BEDELL S, PENNINGTON W T, et al. Organophosphazenes. 18. Friedel-crafts phenylation reactions of alkyl-and (dimethylamino)fluorocyclotriphosphazenes[J]. Inorganic Chemistry, 1985, 24 (11):1653-1656.
[26] XIA Lan, XIA Yonggao, LIU Zhaoping. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources, 2015, 278:190-196.
[27] ZHOU Daiying, LI Weishan, TAN Chunlin, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184 (2):589-592.
[28] XIANG Hongfa, XU Huayun, WANG Zhengzhou, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame-retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173 (1):562-564.
[29] BENMAYZA A, LU Wenquan, RAMANI V, et al. Electrochemical and thermal studies of LiNi0.8Co0.15Al0.015O2 under fluorinated electrolytes[J]. Electrochimica Acta, 2014, 123 (10):7-13.
[30] ARAI J, KATAYAMA H, AKAHOSHI H. Binary mixed solvent electrolytes containing trifluoropropylene carbonate for lithium secondary batteries[J]. Journal of the Electrochemical Society, 2002, 149 (2):A217-A226.
[31] YAMAKI J, YAMAZAKI I, EGASHIRA M, et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells[J]. Journal of Power Sources, 2001, 102 (1):288-293.
[32] SATO K, YAMAZAKI I, OKADA S, et al. Mixed solvent electrolytes containing fluorinated carboxylic acid esters to improve the thermal stability of lithium metal anode cells[J]. Solid State Ionics, 2002, 148 (3):463-466.
[33] IHARA M, HANG B T, SATO K, et al. Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte[J]. Journal of the Electrochemical Society, 2003, 150 (11):A1476-A1483.
[34] ARAI J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries[J]. Journal of Applied Electrochemistry, 2002, 32 (10):1071-1079.
[35] ARAI J. Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries[J]. Journal of the Electrochemical Society, 2003, 150 (2):A219-A228.
[36] NAOI K, IWAMA E, HONDA Y, et al. Discharge behavior and rate performances of lithium-ion batteries in nonflammable hydrofluoroethers (Ⅱ)[J]. Journal of the Electrochemical Society, 2010, 157 (2):A190-A195.
[37] NAOI K, IWAMA E, OGIHARA N, et al. Nonflammable hydrofluoroether for lithium-ion batteries:Enhanced rate capability, cyclability, and low-temperature performance[J]. Journal of the Electrochemical Society, 2009, 156 (4):A272-A276.
[38] NAGASUBRAMANIAN G, ORENDORFF C J. Hydrofluoroether electrolytes for lithium-ion batteries:Reduced gas decomposition and nonflammable[J]. Journal of Power Sources, 2011, 196 (20):8604-8609.
[39] XIA Lan, XIA Yonggao, WANG Chuanshui, et al. 5 V-Class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2 (11):1707-1712.
[40] WANG Jianhui, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3 (1):22-29.
[41] JEONG S, INABA M, IRIYAMA Y, et al. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions[J]. Electrochemical and Solid-State Letters, 2003, 6 (1):A13-A15.
[42] JEONG S, INABA M, IRIYAMA Y, et al. Interfacial reactions between graphite electrodes and propylene carbonate-based solutions:Electrolyte-concentration dependence of electrochemical lithium intercalation reaction[J]. Journal of Power Sources, 2008, 175 (1):540-546.
[43] YAMADA Y, USUI K, CHIANG C H, et al. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes[J]. ACS Applied Materials & Interfaces, 2014, 6 (14):10892-10899.
[44] YAMADA Y, YAEGASHI M, ABE T, et al. A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chemical Communications, 2013, 49 (95):11194-11196.
[45] YAMADA Y, TAKAZAWA Y, MIYAZAKI K, et al. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes:Effect of solvation structure of lithium ion[J]. The Journal of Physical Chemistry C, 2010, 114 (26):11680-11685.
[46] SUO Liumin, HU Yongsheng, LI Hong, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4:1481.
[47] QIAN Jiangfeng, HENDERSON W A, XU Wu, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6:6362.
[48] PAPPENFUS T M, HENDERSON W A, OWENS B B, et al. Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials[J]. Journal of the Electrochemical Society, 2004, 151 (2):A209-A215.
[49] YOSHIDA K, NAKAMURA M, KAZUE Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. Journal of the American Chemical Society, 2011, 133 (33):13121-13129.
[50] YOSHIDA K, TSUCHIYA M, TACHIKAWA N, et al. Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis (trifluoromethanesulfonyl)amide and glymes[J]. The Journal of Physical Chemistry C, 2011, 115 (37):18384-18394.
[51] YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136 (13):5039-5046.
[52] ZENG Ziqi, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3:674-681.
[53] CHEN Shuru, ZHENG Jianming, YU Lu, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2 (8):1548-1558.
[54] ZHENG Jianming, CHEN Shuru, ZHAO Wengao, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3 (2):315-321.
[55] REN Yonghuan, MU Daobin, WU Feng, et al. Novel slurry electrolyte containing lithium metasilicate for high electrochemical performance of a 5 V cathode[J]. ACS Applied Materials & Interfaces, 2015, 7 (41):22898-22906.
[56] XU Hewei, SHI Junli, HU Guosheng, et al. Hybrid electrolytes incorporated with dandelion-like silane-Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries[J]. Journal of Power Sources, 2018, 391:113-119. |