[1] WANG K, WU H P, MENG Y N, et al. Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1):14-31.
[2] LIU W W, LI X, ZHU M H, et al. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel[J]. Journal of Power Sources, 2015, 282:179-186.
[3] WANG Q H, JIAO L F, DU H M, et al. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors[J]. Journal of Power Sources, 2014, 245:101-106.
[4] MA W J, CHEN S H, YANG S Y, et al. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors[J]. Journal of Power Sources, 2016, 306:481-488.
[5] ZHANG Y B, DING M J, SONG C J, et al. Selective catalytic reduction of NO with NH3 over MnO2/PDOPA@CNT catalysts prepared by poly(dopamine) functionalization[J]. New Journal of Chemistry, 2018, 42(14):11273-11275.
[6] LI X, DONG F, XU N, et al. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(18):15591-15601.
[7] YAO B, ZHANG J, KOU T Y, et al. Paper-based electrodes for flexible energy storage devices[J]. Advanced Science, 2017, 4(7):doi:10.1002/advs.201700107.
[8] HUI N, CHAI F L, LIN P P, et al. Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors[J]. Electrochim. Acta, 2016, 199:234-241.
[9] GARAKANI M A, ABOUALI S, CUI J, et al. In-situ TEM study of lithiation into PPy coated α-MnO2/graphene foam freestanding electrode[J]. Materials Chemistry Frontiers, 2018, 2(8):1481-1488.
[10] IGUCHI H, MIYAHARA K, HIGASHI C, et al. Preparation of uncurled and planar multilayered graphene using polythiophene derivatives via liquid-phase exfoliation of graphite[J]. FlatChem, 2018, 8:31-39.
[11] BAG S, RETNA RAJ C. Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors[J]. Mater. Chem., 2016, 4(2):587-595.
[12] WANG K, YANG J, ZHU J, et al. General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(22):11236-11245.
[13] RAMESH S, KARUPPASAMY K, MSOLLI S, et al. Nanocrystalline structured of NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitor[J]. New Journal of Chemistry, 2017, 41(24):15517-15527.
[14] ZHANG Q Z, ZHANG D, MIAO Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small, 2018, 14(24):doi:10.1002/smll.201702883.
[15] SUN S Q, JIANG G H, LIU Y K, et al. Facile preparation of hybrid films based on MnO2 and reduced graphene oxide for a flexible supercapacitor[J]. Journal of Electronic Materials, 2018, 47(10):5993-5999.
[16] GAO G, ZHANG Q, CHENG X B, et al. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method[J]. Journal of Alloys & Compounds, 2015, 649:82-88.
[17] SUN H B, GU H Z, CHEN Y. Preparation and electrochemical properties of graphene/MnO2 nanocomposites for supercapacitors[J]. Key Engineering Materials, 2018, 768:102-108.
[18] ZHANG L F, DU S Q, LIU Y, et al. Manganese dioxide nanoflakes anchored on reduced graphene oxide with superior electrochemical performance for supercapacitorss[J]. IET Micro & Nano Letters, 2017, 12(3):147-150.
[19] MENG X Y, LU L, SUN C W. Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors[J]. Mater. Interfaces, 2018, 10(19):16474-16481.
[20] ZHAO X, WANG H, ZHAI G, et al. Facile assembly of 3D porous reduced graphene oxide/ultrathin MnO2 nanosheets-S aerogels as efficient polysulfide adsorption sites for high-performance lithium-sulfur batteries[J]. Chemistry, 2017, 23(29):7037-7045.
[21] XU J, CHEN Y, DONG Z, et al. Facile synthesis of the Ti3+-TiO2-RGO compound with controllable visible light photocatalytic performance:GO regulating lattice defects[J]. Journal of Materials Science, 2018, 53(18):12770-12780.
[22] LIU C L, GUI D Y, LIU J H. Process dependent graphene-wrapped plate-like MnO2 nanospheres for high performance supercapacitor[J]. Chemical Physics Letters, 2014, 614:123-128.
[23] ZHAO X, TANG J, YU F, et al. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition[J]. Journal of Alloys and Compounds, 2018, 766(25):266-273.
[24] XIONG C Y, LI T H, ZHAO T K, et al. Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors[J]. NANO, 2018, 13(1):doi:10.1142/s1793292018500133.
[25] ZHOU J H, CHEN N N, GE Y, et al. Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition[J]. Science China Materials, 2018, 6(12):243-253.
[26] FALCAO E H L, BLAIR R G, MACK J J, et al. Microwave exfoliation of a graphite intercalation compound[J]. Carbon, 2007, 45(6):1367-1369.
[27] VIMUNA V M, ATHIRA A R, XAVIER T S, et al. Microwave assisted synthesis of graphene oxide-MnO2 nanocomposites for electrochemical supercapacitors[J]. AIP Conference Proceedings, 2018, 1953(1):doi:10.1063/1.5032471.
[28] YAN J, FAN Z J, WEI T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13):3825-3833.
[29] LIU R R, WEN D D, ZHANG X Y, et al. Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes[J]. Materials Research Express, 2018, 5(6):doi:10.1088/2053-1591/aac7b4.
[30] QIU X, XU D Y, MA L, et al. Preparation of manganese oxide/graphene aerogel and its application as an advanced supercapacitor electrode material[J]. International Journal of Electrochemical Science, 2017, 12:2173-2183.
[31] ZHAO Y F, RAN W, HE J, et al. High-performance asymmetric supercapacitor based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability[J]. Small, 2014, 11(11):1310-1319.
[32] MA W J, CHEN S H, YANG S Y, et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon, 2017, 113:151-158.
[33] SHENG L Z, JIANG L L, WEI T, et al. Fe(CN)63- ion-modified MnO2/graphene nanoribbons enabling high energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(17):7649-7658.
[34] RAKHI R B, ALHEBSHI N A, ANJUM D H, et al. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(38):16190-16198.
[35] LI J, CHEN Y, WU Q, et al. Synthesis and electrochemical properties of Fe3O4/MnO2/RGOs sandwich-like nano-superstructures[J]. Journal of Alloys & Compounds, 2017, 693:373-380.
[36] OJHA G P, PANT B, PARK S J, et al. Synthesis and characterization of reduced graphene oxide decorated with CeO2-doped MnO2 nanorods for supercapacitor applications[J]. Journal of Colloid & Interface Science, 2017, 494:338-344.
[37] WANG K, LI L W, XUE W, et al. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance[J]. International Journal of Electrochemical Science, 2017, 12(9):8306-8314.
[38] JI J Y, ZHANG X Y, HUANG Z L, et al. One-step synthesis of graphene oxide/polypyrrole/MnO2 ternary nanocomposites with an improved electrochemical capacitance[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(6):4356-4361.
[39] 刘文杰, 孙现众, 郝青丽. 电化学沉积制备MnO2/PEDOT:PSS复合材料及其电容特性研究[J]. 储能科学与技术, 2018, 7(2):262-269. LIU W J, SUN X Z, HAO Q L. Electrochemical deposition of MnO2/PEDOT:PSS composite and its capacitance characteristics[J]. Energy Storage Science and Technology, 2018, 7(2):262-269.
[40] HAREESH K, SHATEESH B, JOSHI R P, et al. Ultra high stable supercapacitance performance of conducting polymer coated MnO2 nanorods/RGO nanocomposites[J]. RSC Advances, 2017, 7(32):20027-20036.
[41] WU T, WANG C N, MO Y, et al. A ternary composite with manganese dioxide nanorods and graphene nanoribbons embedded in a polyaniline matrix for high-performance supercapacitors[J]. RSC Advances, 2017, 7(53):33591-33599. |