储能科学与技术 ›› 2020, Vol. 9 ›› Issue (3): 762-775.doi: 10.19799/j.cnki.2095-4239.2020.0151

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2020.02.01—2020.03.31)

金周(), 张华, 田孟羽, 季洪祥, 田丰, 起文斌, 武怿达, 詹元杰, 闫勇, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2020-04-20 出版日期:2020-05-05 发布日期:2020-05-11
  • 通讯作者: 黄学杰 E-mail:jinzhou15@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
  • 作者简介:金周(1991—),男,博士研究生,研究方向为锂离子电池负极材料,E-mail:jinzhou15@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteries(Feb. 01, 2020 to Mar. 31, 2020)

JIN Zhou(), ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-04-20 Online:2020-05-05 Published:2020-05-11
  • Contact: Xuejie HUANG E-mail:jinzhou15@mails.ucas.ac.cn;xjhuang@iphy. ac.cn

摘要:

本文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年2月1日至2020年3月31日上线的锂电池研究论文,共有3295篇,选择其中100篇加以评论。正极材料主要研究了层状氧化物,主要是高镍三元的衰减机理和如何通过表界面修饰加以改善,富锂和高电压钴酸锂也有一部分。负极材料研究侧重于金属锂负极和硅负极,其中金属锂负极可通过制备界面膜,电解液添加剂或改进集流体促进锂离子均匀沉积,减少枝晶形成;硅基负极则聚焦于制备复合材料来抑制体积膨胀和提高电子电导,进而提升库仑效率和循环稳定性。固态电解质研究主要涵盖了高电导硫化物和有机聚合物电解质,液态电解质则重点研究功能添加剂对界面层的作用。固态、锂硫、锂空等电池技术还处在早期阶段,研究人员致力于寻找合适的电极设计和制备方法,保持电极的电子、离子传输性能及反应可逆性。在测量和表征技术上,多种原位技术可以获取电极内部的形貌、锂元素分布,电位分布等信息在充放电过程中的动态变化,从而为机理研究和性能提升提供依据。理论模拟工作侧重于界面SEI形成机理分析,此外还有一些介观和宏观尺度的理论模型被提出,来理解实际使用中的动力学问题。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 3295 papers online from Feb. 01, 2020 to Mar. 31, 2020. 100 of them were selected to be highlighted. Layered oxide especially Ni-rich cathode materials are under extensive investigations for studying the failure mechanism and the effects of surface modifications. There are also a few papers on Li-rich and high voltage LiCoO2 materials. As for anode materials, large efforts were devoted to Si based composite anode materials to improving the cycling performance and columbic efficiency by inhibiting the volume expansion and keeping the electron conductivity. Cycling properties of metallic lithium anode are improved by using different kinds of surface cover layer, electrolyte additives and current collector modifications. Both of inorganic and polymer based solid state electrolyte are burningly researched and new additives and lithium salts are used for liquid electrolyte. Solid state batteries, Li-S and Li-O2 batteries are still at early stage and new electrode preparation methods are proposed to keep the conducting network and reaction reversibility. Various in-situ technologies are used to observe dynamic changes of morphology, lithium and potential distribution. Theoretical works are related to the mechanism of SEI formation, and some mesoscopic and macroscopic models for kinetic properties.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: