储能科学与技术 ›› 2020, Vol. 9 ›› Issue (3): 762-775.doi: 10.19799/j.cnki.2095-4239.2020.0151
金周(), 张华, 田孟羽, 季洪祥, 田丰, 起文斌, 武怿达, 詹元杰, 闫勇, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()
收稿日期:
2020-04-20
出版日期:
2020-05-05
发布日期:
2020-05-11
通讯作者:
黄学杰
E-mail:jinzhou15@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
作者简介:
金周(1991—),男,博士研究生,研究方向为锂离子电池负极材料,E-mail:JIN Zhou(), ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie()
Received:
2020-04-20
Online:
2020-05-05
Published:
2020-05-11
Contact:
Xuejie HUANG
E-mail:jinzhou15@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
摘要:
本文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年2月1日至2020年3月31日上线的锂电池研究论文,共有3295篇,选择其中100篇加以评论。正极材料主要研究了层状氧化物,主要是高镍三元的衰减机理和如何通过表界面修饰加以改善,富锂和高电压钴酸锂也有一部分。负极材料研究侧重于金属锂负极和硅负极,其中金属锂负极可通过制备界面膜,电解液添加剂或改进集流体促进锂离子均匀沉积,减少枝晶形成;硅基负极则聚焦于制备复合材料来抑制体积膨胀和提高电子电导,进而提升库仑效率和循环稳定性。固态电解质研究主要涵盖了高电导硫化物和有机聚合物电解质,液态电解质则重点研究功能添加剂对界面层的作用。固态、锂硫、锂空等电池技术还处在早期阶段,研究人员致力于寻找合适的电极设计和制备方法,保持电极的电子、离子传输性能及反应可逆性。在测量和表征技术上,多种原位技术可以获取电极内部的形貌、锂元素分布,电位分布等信息在充放电过程中的动态变化,从而为机理研究和性能提升提供依据。理论模拟工作侧重于界面SEI形成机理分析,此外还有一些介观和宏观尺度的理论模型被提出,来理解实际使用中的动力学问题。
中图分类号:
金周, 张华, 田孟羽, 季洪祥, 田丰, 起文斌, 武怿达, 詹元杰, 闫勇, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2020.02.01—2020.03.31)[J]. 储能科学与技术, 2020, 9(3): 762-775.
JIN Zhou, ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie.
[J]. Energy Storage Science and Technology, 2020, 9(3): 762-775.
Reviews of selected 100 recent papers for lithium batteries(Feb. 01, 2020 to Mar. 31, 2020)
1 | FENG Z , HUANG X , RAJAGOPALAN R , et al . Enhanced electrochemical properties of LiNi0.8Co0.1Mn0.1O2 at elevated temperature by simultaneous structure and interface regulating[J]. Journal of the Electrochemical Society, 2019, 166(8): A1439-A1448. |
2 | YASMIN A , SHEHZAD M A , DING X , et al . A first report on ex-situ synthesis and utilization of pure La4NiLiO8 in emerging high-performance safe batteries[J]. Journal of Alloys and Compounds, 2020, 821: doi: 10.1016/j.jallcom.2019.153208. |
3 | XU G L , LIU Q , LAU K K S, et al . Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes[J]. Nature Energy, 2019, 4(6): 484-494. |
4 |
KIM J , LEE J, BAE C, et al . Sublimation-induced gas-reacting process for high energy density Ni-rich electrode materials[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c00038 .
doi: 10.1021/acsami.0c00038 |
5 | CHENG X , LIU M , YIN J , et al . Regulating surface and grain-boundary structures of Ni-rich layered cathodes for ultrahigh cycle stability[J]. Small, 2020: e1906433-e1906433. |
6 | GU W , DONG Q , ZHENG L , et al . Ambient air stable Ni-rich layered oxides enabled by hydrophobic self-assembled monolayer[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1937-1943. |
7 | LI J , CHANG C H , MANTHIRAM A . Toward long-life, ultrahigh-nickel layered oxide cathodes for lithium-ion batteries: Optimizing the interphase chemistry with a dual-functional polymer[J]. Chemistry of Materials, 2020, 32(2): 759-768. |
8 | AISHOVA A , PARK G T , YOON C S , et al . Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201903179. |
9 | YANG W , XIANG W , CHEN Y X , et al . Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability[J]. ACS Applied Materials & Interfaces, 2020. 12(9): 10240-10251. |
10 | YOON M , DONG Y , YOO Y, et al . Unveiling nickel chemistry in stabilizing high-voltage cobalt-rich cathodes for lithium-ion batteries[J]. Advanced Functional Materials, 2020, 30(6): doi: 10.1002/adfm.201907903. |
11 | MU L , KAN W H , KUAI C , et al . Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12874-12882. |
12 |
JI H , WU J , CAI Z , et al . Ultrahigh power and energy density in partially ordered lithium-ion cathode materials[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0573-1 .
doi: 10.1038/s41560-020-0573-1 |
13 | SANEIFAR H , ZAGHIB K , BELANGER D . Crown ether functionalized conductive carbon for high-voltage spinel LiMn1.5Ni0.5O4/graphite cell[J]. ACS Applied Energy Materials, 2020, 3(1): 647-657. |
14 |
TIURIN O , SOLOMATIN N , AUINAT M , et al . Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material[J]. Journal of Power Sources, 2020, doi: 10.3390/inorganics6020046 .
doi: 10.3390/inorganics6020046 |
15 | GU T , WANG J , TIAN J H , et al . Phosphorus and boron co-doped carbon coating of LiNi0.5Mn1.5O4 cathodes for advanced lithium-ion batteries[J]. Chemelectrochem, 2019. 6(8): 2224-2230. |
16 |
DAI G , GAO Y , NIU Z , et al . Dilution of the electron density in the Pi-conjugated skeleton of organic cathode materials improves the discharge voltage[J]. Chemsuschem, 2020, doi: 10.1002/cssc.201903502 .
doi: 10.1002/cssc.201903502 |
17 | LI H , CHAO D , CHEN B , et al . Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy[J]. Journal of the American Chemical Society, 2020, 142(4): 2012-2022. |
18 | NIU C , PAN H , XU W , et al . Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019. 14(6): doi: 10.1038/s41565-019-0427-9. |
19 | GALLUZZO M D , HALAT D M , LOO W S, et al . Dissolution of lithium metal in poly(ethylene oxide)[J]. ACS Energy Letters, 2019, 4(4): 903-907. |
20 | GAO Y , GUO M , YUAN K , et al . Multifunctional silanization interface for high-energy and low-gassing lithium metal pouch cells[J]. Advanced Energy Materials, 2020, 10(4): 10.1002/aenm.201903362. |
21 |
HUANG Y , CHEN B , DUAN J , et al . Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.201914417 .
doi: 10.1002/anie.201914417 |
22 | JIE Y, LIU X , LEI Z , et al . Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte[J]. Angewandte Chemie-International Edition, 2020., 59(9): 3505-3510. |
23 | ISHIKAWA K , HARADA S , TAGAWA M , et al . Effect of crystal orientation of Cu current collectors on cycling stability of Li metal anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9341-9346. |
24 | JIA H , LI X , SONG J , et al . Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15217-9. |
25 | ZHANG J , HOU X Z , TANG J , et al . Phosphoric acid induced homogeneous crosslinked phosphorus doped porous Si nanoparticles with superior lithium storage performance[J]. Applied Surface Science, 2020, 509: doi: 10.1039/C1JM12857D. |
26 | NAZIR A , LE H T T , MIN C W , et al . Coupling of a conductive Ni-3(2,3,6,7,10,11-hexaiminotriphenylene)(2) metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries[J]. Nanoscale, 2020, 12(3): 1629-1642. |
27 | MA L , MENG J , PAN Y , et al . Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2020, 36(8): 2003-2011. |
28 | WANG Y , SATOH M , ARAO M , et al . High-energy, long-cycle-life secondary battery with electrochemically pre-doped silicon anode[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-59913-4. |
29 | DOHERTY J , MCNULTY D , BISWAS S , et al . Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries[J]. Nanotechnology, 2020, 31(16): 165402. |
30 | DUBEY R J C , SASIKUMAR P V W , KRUMEICH F , et al . Silicon oxycarbide-Tin nanocomposite as a high-power-density anode for Li-ion batteries[J]. Advanced Science, 2019, 6(19): doi: 10.1002/advs.201901220. |
31 | HAN B , ZHANG W , GAO D , et al . Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227564. |
32 | HARPAK N , DAVIDI G , MELAMED Y , et al . Self-catalyzed vertically aligned carbon nanotube-silicon core-shell array for highly stable, high-capacity lithium-ion batteries[J]. Langmuir, 2020, 36(4): 889-896. |
33 | LI Y , OU C, ZHU J , et al . Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20(3): 2034-2046. |
34 | ADAMS R A , MISTRY A N , MUKHERJEE P P , et al . Materials by design: Tailored morphology and structures of carbon anodes for enhanced battery safety[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13334-13342. |
35 |
ARAYAMPARAMBIL J J , CHEN K , IADECOLA A , et al . Reversible high capacity and reaction mechanism of Cr2(NCN)3 negative electrodes for Li-ion batteries[J]. Energy Technology, 2020, doi: 10.1002/ente.201901260 .
doi: 10.1002/ente.201901260 |
36 |
YANG Y , ZHU H , XIAO J , et al . Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides[J]. Advanced Materials, 2020, doi: 2020.10.1002/adma.201905295 .
doi: 2020.10.1002/adma.201905295 |
37 | HU R , QIU H , ZHANG H , et al . A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO2/Li metal batteries[J]. Small, 2020: e1907163-e1907163. |
38 | CHEN J , YANG Z , LIU G , et al . Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 305-312. |
39 | ALDALUR I , WANG X , SANTIAGO A , et al . Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2020.28236. |
40 |
KAUP K , BAZAK J D , VAJARGAH S H , et al . A lithium oxythioborosilicate solid electrolyte glass with superionic conductivity[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.201902783 .
doi: 10.1002/aenm.201902783 |
41 | CHOI S , JEON M , JUNG W D , et al . Robust solid-state interface with a deformable glass interlayer in sulfide-based all-solid-state batteries[J]. Solid State Ionics, 2020, 346: doi: 10.1016/j.ssi.2019.115217. |
42 | INDRAWAN R F , YAMAMOTO T , PHUC N HUU HUY , et al . Liquid-phase synthesis of 100Li3PS4-50Li1- x Li3PO4 solid electrolytes[J]. Solid State Ionics, 2020, 345: doi: 10.1016/j.ssi.2019.115184. |
43 | PARK K H , KAUP K , ASSOUD A , et al . High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(2): 533-539. |
44 | ZHOU Q , DONG S , LV Z , et al . A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(6): doi: 10.1002/aenm.201903441. |
45 | MATSUDA R , KOKUBO T , NGUYEN H H , et al . Preparation of ambient air-stable electrolyte Li4SnS4 by aqueous ion-exchange process[J]. Solid State Ionics, 2020, 345: doi: 10.1016/j.ssi.2019.115190. |
46 | DUCHENE L , KIM D H , SONG Y B , et al . Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries[J]. Energy Storage Materials, 2020, 26: 543-549. |
47 | SUN Y Y , HOU P Y , ZHANG L C . Mitigating the microcracks of high-Ni oxides by insitu formation of binder between anisotropic grains for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13923-13930. |
48 | HAN J G , JEONG M Y , KIM K , et al . An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227366. |
49 | LIU L , GAO W , CUI Y , et al . A bifunctional additive bi(4-flurorophenyl) sulfone for enhancing the stability and safety of nickel-rich cathode based cells[J]. Journal of Alloys and Compounds, 2020, 820: doi: 10.1016/j.jallcom.2019.153069. |
50 | KIM K , HWANG D , KIM S , et al . Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries[J]. Advanced Energy Materials, 2020: doi: 10.1002/aenm.202000012. |
51 | MARKEVICH E , SALITRA G , AFRI M , et al . Improved performance of Li-metal vertical bar LiNi0.8Co0.1Mn0.1O2 cells with high-loading cathodes and small amounts of electrolyte solutions containing fluorinated carbonates at 30 degrees C-55 degrees C[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab67a1. |
52 | YANG J , SHKROB I , LIU K , et al . 4-(trimethylsilyl) morpholine as a multifunctional electrolyte additive in high voltage lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7a9e. |
53 | ZHENG Q , YAMADA Y , SHANG R , et al . A cyclic phosphate-based battery electrolyte for high voltage and safe operation[J]. Nature Energy, 2020: 291-298. |
54 | JONES J P , SMART M C , KRAUSE F C , et al . The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-711/ab6bc2. |
55 | PHAM H Q , CHUNG G J , HAN J , et al . Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite parallel to LiCoO2 pouch cell under-20 degrees C[J]. Journal of Chemical Physics, 2020, 152(9): doi: 10.1063/1.5144280. |
56 | DAI W , DONG N , XIA Y , et al . Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134633. |
57 | QIAN Y , KANG Y , HU S , et al . Mechanism study of unsaturated tripropargyl phosphate as an efficient electrolyte additive forming multifunctional interphases in lithium ion and lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10443-10451. |
58 | ZHANG J , SHKROB I A , ASSARY R S , et al . An extremely durable redox shuttle additive for overcharge protection of lithium-ion batteries[J]. Materials Today Energy, 2019, 13: 308-311. |
59 | HU Z , ZHAO L , JIANG T , et al . Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes[J]. Advanced Functional Materials, 2019, 29(45): doi: 10.1002/adfm.201906548. |
60 | FU Y , WU Z , YUAN Y , et al . Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide[J]. Nature Communications, 2020, 11(1): 845-845. |
61 |
WANG Z , QI F , YIN L , et al . An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.201903843 .
doi: 10.1002/aenm.201903843 |
62 | HIRATA K , KAWASE T , SUMIDA Y . Electrode/electrolyte interface study of LiCoO2/graphite cell using carbonate-free electrolytes based on lithium bis(fluorosulfonyl)imide and sulfolane[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-7111/ ab68ca. |
63 | SAKUDA A , SATO Y , HAYASHI A , et al . Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries[J]. Energy Technology, 2019, 7(12): doi: 10.1002/ente.201900077. |
64 | TAKEUCHI T , KOJIMA T , KAGEYAMA H , et al . All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency[J]. Energy Technology, 2019, 7(12): doi: 10.1002/ente.201900509. |
65 | XU R , YUE J , LIU S , et al . Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): doi: 10.1021/acsenergylett.9b00430. |
66 | YAN H , WANG H , WANG D , et al . In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Letters, 2019, 19(5): 3280-3287. |
67 | JUNG S H , KIM U H , KIM J H , et al . Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J]. Advanced Energy Materials, 2020, 10(6): doi: 10.1002/aenm.201903360. |
68 | GAO X , YANG X , ADAIR K , et al . 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA/cm2/20 mA·h/cm2 realized by selective nucleation within microchannel walls[J]. Advanced Energy Materials, 2020, 10(7): doi: 10.1002/aenm.201903753. |
69 | LI Y , WANG C , WANG W , et al . Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li-S batteries[J]. ACS Nano, 2020, 14(1): 1148-1157. |
70 | HOU L P , YUAN H , ZHAO C Z , et al . Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. |
71 | HE J , MANTHIRA M A . Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor[J]. Advanced Energy Materials, 2020, 10(3): doi: 10.1002/aenm.201903241. |
72 | CUI J , LI Z , LI J , et al . An atomic-confined-space separator for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(4): 1896-1903. |
73 | XUE W , SHI Z , SUO L , et al . Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382. |
74 | YANG A , ZHOU G , KONG X , et al . Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities[J]. Nature Nanotechnology, 2020. 15(3): doi: 10.1038/s41565-019-0624-6. |
75 | HEINS T P , SCHLUETER N , ERNST S T , et al . On the interpretation of impedance spectra of large-format lithium-ion batteries and its application in aging studies[J]. Energy Technology, 2020, 8(2): doi: 10.1002/ente.201900279. |
76 |
LEE G H, WU J , KIM D , et al . Reversible anionic redox activities in conventional LiNi1/3Co1/3Mn1/3O2 cathodes[J]. Angewandte Chemie (International ed. in English), 2020, doi: 10.1002/ange.202001349 .
doi: 10.1002/ange.202001349 |
77 |
BENEDEK P , FORSLUND O K , NOCERINO E , et al . Quantifying diffusion through interfaces of lithium-ion battery active materials[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.9b21470 .
doi: 10.1021/acsami.9b21470 |
78 | OTOYAMA M , KOWADA H , SAKUDA A , et al . Operando confocal microscopy for dynamic changes of Li+ ion conduction path in graphite electrode layers of all-solid-state batteries[J]. Journal of Physical Chemistry Letters, 2020, 11(3): 900-904. |
79 | ZIESCHE R F , ARLT T , FINEGAN D P , et al . 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique[J]. Nature Communications, 2020, 11(1): 777. |
80 | BABA T , TAKAO N , HONDA Y , et al . A spatially-resolved operando high-energy confocal X-ray diffraction method for observing non-uniform degradation phenomena in a practical cylindrical lithium-ion battery[J]. Electrochemistry, 2020, 88(2): 63-68. |
81 | FINEGAN D P , VAMVAKEROS A , TAN C , et al . Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-14467-x. |
82 | GAUTHIER N , COURREGES C , DEMEAUX J , et al . Probing the in-depth distribution of organic/inorganic molecular species within the SEI of LTO/NMC and LTO/LMO batteries: A complementary ToF-SIMS and XPS study[J]. Applied Surface Science, 2020, 501: doi: 501.10.1016/j.apsusc.2019.144266. |
83 |
HENSCHEL J , PESCHEL C , KLEIN S , et al . Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13 C-labeling of electrolyte components[J]. Angewandte Chemie (International ed. in English), 2020, doi: 10.1002/anie.202000727 .
doi: 10.1002/anie.202000727 |
84 | NIE Z , ONG S, HUSSEY D S , et al . Probing transport limitations in thick sintered battery electrodes with neutron imaging[J]. Molecular Systems Design & Engineering, 2020, 5(1): 245-256. |
85 | DEVAUX D , LEDUC H , DUMAZ P , et al . Effect of electrode and electrolyte thicknesses on all-solid-state battery performance analyzed with the sand equation[J]. Frontiers in Energy Research, 2020, 7: doi: 10.3389/fenrg.2019.00168. |
86 |
BIELEFELD A , WEBER D A , JANEK J . Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.9b22788 .
doi: 10.1021/acsami.9b22788 |
87 | HEKMATFAR M , HASA I , EGHBAL R , et al . Effect of electrolyte additives on the LiNi0.5Mn0.3Co0.2O2 surface film formation with lithium and graphite negative electrodes[J]. Advanced Materials Interfaces, 2020, 7(1): doi: 10.1002/admi.202070005. |
88 | GAO G , ZHENG F , WANG L W . Solid 3D Li-S battery design via stacking 2D conductive microporous coordination polymers and amorphous Li-S layers[J]. Chemistry of Materials, 2020, 32(5): 1974-1982. |
89 | RANDAU S , WEBER D A , KOETZ O , et al . Benchmarking the performance of all-solid-state lithium batteries[J]. Nature Energy, 2020: 259-270. |
90 | NEUMANN A , RANDAU S , BECKER-STEINBERGER K , et al . Analysis of interfacial effects in all-solid-state batteries with thiophosphate solid electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9277-9291. |
91 | HEUBNER C , SCHNEIDER M , MICHAELIS A . Diffusion-limited C-rate: A fundamental principle quantifying the intrinsic limits of Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(2): doi: 10.1002/aenm.201902523. |
92 | BEYER S , KOBSCH O , POSPIECH D , et al . Influence of surface characteristics on the penetration rate of electrolytes into model cells for lithium ion batteries[J]. Journal of Adhesion Science and Technology, 2020, 34(8): 849-866. |
93 | BAASNER A , REUTER F , SEIDEL M , et al . The role of balancing nanostructured silicon anodes and NMC cathodes in lithium-ion full-cells with high volumetric energy density[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-7111/ab68d7. |
94 | NAKAMURA H , KAWAGUCHI T , MASUYAMA T , et al . Dry coating of active material particles with sulfide solid electrolytes for an all-solid-state lithium battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227579. |
95 | CHENG C , DRUMMOND R , DUNCAN S R , et al . Combining composition graded positive and negative electrodes for higher performance Li-ion batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227376. |
96 | HOUCHINS G , VISWANATHAN V . Towards ultra low cobalt cathodes: A high fidelity computational phase search of layered Li-Ni-Mn-Co oxides[J]. Journal of the Electrochemical Society, 2019, 167(7): doi: 10.1149/2.0062007JES. |
97 |
CHEN J , LUO B , CHEN Q , et al . Localized electrons enhanced ion transport for ultrafast electrochemical energy storage[J]. Advanced Materials, 2020, doi: 10.1002/adma.201905578 .
doi: 10.1002/adma.201905578 |
98 | ZHANG J , ZHENG C , LI L , et al . Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201903311. |
99 |
GONZALEZ M S , YAN Q , HOLOUBEK J , et al . Draining over blocking: Nano-composite janus separators for mitigating internal shorting of lithium batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.201906836 .
doi: 10.1002/adma.201906836 |
100 | BILLOT N , GUENTHER T , SCHREINER D , et al . Investigation of the adhesion strength along the electrode manufacturing process for improved lithium-ion anodes[J]. Energy Technology, 2020, 8(2): doi: 10.1002/ente.201801136. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||