储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1416-1427.doi: 10.19799/j.cnki.2095-4239.2020.0169
收稿日期:
2020-05-08
修回日期:
2020-05-28
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
卢周广
E-mail:zhengorwei@163.com;luzg@sustech.edu.cn
作者简介:
郑薇(1996—),女,硕士研究生,主要研究方向为锂/钠层状过渡金属氧化物,E-mail:基金资助:
Wei ZHENG(), Qiong LIU, Zhouguang LU()
Received:
2020-05-08
Revised:
2020-05-28
Online:
2020-09-05
Published:
2020-09-08
Contact:
Zhouguang LU
E-mail:zhengorwei@163.com;luzg@sustech.edu.cn
摘要:
由于资源丰富、价格低廉等特点,钠离子电池逐渐成为储能领域的研究热点。然而,钠离子电池正极材料较低的比容量是限制钠离子电池发展的关键因素之一。近年的相关研究发现,基于过渡金属阳离子与晶格氧阴离子双重氧化还原反应的层状过渡金属氧化物具有高的比容量,是下一代高比能量钠离子电池的首选正极材料。因此,深入了解阴离子氧的氧化还原反应的结构基础及演化机制,对探索高容量电池正极材料有重要意义。本文讨论了钠离子电池层状过渡金属氧化物中阴离子氧的氧化还原反应活化原理、以及结构调控对激发晶格氧活性的影响,并展望了其未来的发展趋势和前景,以期为今后该类型正极材料的研究提供参考。关键词:钠离子电池;正极材料;层状过渡金属氧化物;阴离子氧化还原反应;晶格氧活性调控
中图分类号:
郑薇, 刘琼, 卢周广. 钠离子电池层状过渡金属氧化物中阴离子氧的氧化还原反应活性调控[J]. 储能科学与技术, 2020, 9(5): 1416-1427.
Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427.
1 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104: 4271-4301. |
2 | LARCHER D, TARASCON J R. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
3 | LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457. |
4 | XU J, LIN F, DOEFF M M, et al. A review of Ni-based layered oxides for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(3): 874-901. |
5 | HE P, YU H J, LI D, et al. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(9): doi: 10.1039/c2jm14305d. |
6 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
7 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): doi: 10.1021/cr500192f. |
8 | KIM S W, SEO D H, MA A, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
9 | PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): doi: 10.1039/c3ee40847g. |
10 | QIAO R, WRAY L A, KIM J H, et al. Direct experimental probe of the Ni(II)/Ni(III)/Ni(IV) redox evolution in LiNi0.5Mn1.5O4 electrodes[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27228-27233. |
11 | ZHENG X, LI X H, WANG Z X, et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery[J]. Electrochimica Acta, 2016, 191: 832-840. |
12 | DAHÉRON L, DEDRYVERE R, MARTINEZ H, et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS[J]. Chemistry of Materials, 2008, 20(2): 583-590. |
13 | ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3(5): 373-386. |
14 | SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials, 2013, 12(9): 827-835. |
15 | GRIMAUD A, HONG W T, SHAO-HORN Y, et al. Anionic redox processes for electrochemical devices[J]. Nature Materials, 2016, 15(2): 121-126. |
16 | BEN Y M, VERGNET J, SAUBANERE M, et al. Unified picture of anionic redox in Li/Na-ion batteries[J]. Nature Materials, 2019, 18(5): 496-502. |
17 | LI B,XIA D. Anionic redox in rechargeable lithium batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201701054. |
18 | ZHAO C L, WANG Q D, LU Y S, et al. Review on anionic redox for high capacity lithium- and sodium-ion batteries[J]. Journal of Physics D: Applied Physics, 2017, 50(18): doi: 10.1088/1361-6463/aa646d. |
19 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1/2/3/4): 81-85. |
20 | TARASCON J, VAUGHAN G, CHABRE Y, et al. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry[J]. Journal of Solid State Chemistry, 1999, 147(1): 410-420. |
21 | AYDINOL M, KOHAN A, CEDER G, et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Physical Review B, 1997, 56(3): 1354. |
22 | CEDER G, CHIANG Y M, SADOWAY D, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations[J]. Nature, 1998, 392(6677): 694-696. |
23 | YOON W S, KIM K B, KIM M G, et al. Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry B, 2002, 106(10): 2526-2532. |
24 | HY S, FELIX F, RICK J, et al. Direct In situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2(0<x<0.5)[J]. Journal of the American Chemical Society, 2014, 136(3): 999-1007. |
25 | ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8(1): doi: 10.1038/s41467-017-02291-9. |
26 | HY S, SU W N, CHEN J M, et al. Soft X-ray absorption spectroscopic and Raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116(48): 25242-25247. |
27 | LI X, QIAO Y, GUO S, et al. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials[J]. Advanced Materials, 2018, 30(14): doi: 10.1002/adma.201705197. |
28 | MCCALLA E, ABAKUMOV A M, SAUBANÈRE M, et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015, 350(6267): doi: 10.1126/science.aac8260. |
29 | HY S, LIU H, ZHANG M, et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries[J]. Energy & Environmental Science, 2016, 9(6): 1931-1954. |
30 | SATHIYA M, RAMESHA K, ROUSSE G, et al. High performance Li2Ru1–yMnyO3 (0.2≤y≤0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding[J]. Chemistry of Materials, 2013, 25(7): 1121-1131. |
31 | LUO K, ROBERTS M R, HAO R, et al. Charge compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7): 684-691. |
32 | SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7): 692-697. |
33 | OKUBO M, YAMADA A. Molecular orbital principles of oxygen-redox battery electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36463-36472. |
34 | BOISSE B M D, LIU G, MA J, et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms11397. |
35 | PEREZ A J, BATUK D, RE M S, et al. Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3[J]. Chemistry of Materials, 2016, 28(22): 8278-8288. |
36 | ZHANG X, QIAO Y, GUO S, et al. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries[J]. Advanced Materials, 2019, 31(27): doi: 10.1002/adma.201807770. |
37 | KIM D, CHO M, CHO K. Rational design of Na(Li1/3Mn2/3)O2 operated by anionic redox reactions for advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(33): doi: 10.1002/adma.201701788. |
38 | RONG X H, LIU J, HU E Y, et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode[J]. Joule, 2018, 2(1): 125-140. |
39 | RONG X H, HU E Y, LU Y X, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3(2): 503-517. |
40 | HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2019, 577(7791): 502-508. |
41 | MAITRA U, HOUSE R A, SOMERVILLE J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2[J]. Nature Chemistry, 2018, 10(3): 288-295. |
42 | HOUSE R A, MAITRA U, JIN L, et al. What triggers oxygen loss in oxygen redox cathode materials?[J]. Chemistry of Materials, 2019, 31(9): 3293-3300. |
43 | SONG B, HU E, LIU J, et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox[J]. Journal of Materials Chemistry A, 2019, 7(4): 1491-1498. |
44 | MORTEMARD D B B, NISHIMURA S I, WATANABE E, et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn vacancy)[J]. Advanced Energy Materials, 2018, 8(20): doi: 10.1002/aenm.201800409. |
45 | SONG B H, TANG M X, HU E Y, et al. Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7[J]. Chemistry of Materials, 2019, 31(10): 3756-3765. |
46 | MA C, ALVARADO J, XU J, et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(13): 4835-4845. |
47 | ZHAO C L, WANG Q D, LU Y X, et al. Decreasing transition metal triggered oxygen redox activity in Na-deficient oxides[J]. Energy Storage Materials, 2018, 20: 395-400. |
48 | BAI X, SATHIYA M, BEATRIZ M S, et al. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1-yZnyO2(0<y<0.23)[J]. Advanced Energy Materials, 2018, 8(32): doi: 10.1002/aenm.201802379. |
49 | ZHENG W, LIU Q, WANG Z Y, et al. Stabilizing the oxygen lattice and reversible oxygen redox in Na-deficient cathode oxides[J]. Journal of Power Sources, 2019, 439: doi: 10.1002/anie.201900444. |
50 | KONAROV A, JO J H, CHOI J U, et al. Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries[J]. Nano Energy, 2019, 59: 197-206. |
51 | ZHENG W, LIU Q, WANG Z Y, et al. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 28: 300-306. |
52 | RISTHAUS T, ZHOU D, CAO X, et al. A high-capacity P2-Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity[J]. Journal of Power Sources, 2018, 395: 16-24. |
53 | KONG W J, GAO R, LI Q Y, et al. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg Co-doping[J]. Journal of Materials Chemistry A, 2019, 7(15): 9099-9109. |
54 | KIM E J, MA L A, DUDA L D, et al. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide[J]. ACS Applied Energy Materials, 2019, 3(1): 184-191. |
55 | HAKIM C, SABI N, DAHBI M, et al. Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries[J]. Communications Chemistry, 2020, 3(1): 1-9. |
56 | YAN P, ZHENG J, TANG K Z, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 14(6): 602-608. |
57 | SATHIYA M, ABAKUMOV A M, FOIX D, et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nature Materials, 2015, 14(2): 230-238. |
58 | MYEONG S, CHO W, JIN W, et al. Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-05802-4. |
[1] | 肖浩逸, 何晓霞, 梁佳佳, 李春丽. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, (): 1-12. |
[2] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[3] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[4] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[5] | 刘杭鑫, 陈现涛, 孙强, 赵晨曦. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
[6] | 李夔宁, 王靖鸿, 谢翌, 刘彬, 刘江岩, 刘召婷. 锂离子电池低温复合加热策略及优化[J]. 储能科学与技术, 2022, (): 1-9. |
[7] | 李放, 闵永军, 王琛, 张涌. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, (): 1-12. |
[8] | 李磊, 李钊, 姬丹, 牛慧昌. 过充电触发的LFP和NCM锂离子电池的热失控行为:差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. |
[9] | 王军, 阮琳, 邱彦靓. 锂离子电池低温快速加热方法研究进展[J]. 储能科学与技术, 2022, 11(5): 1563-1574. |
[10] | 袁建华, 刘雅萍, 赵子玮, 刘宇, 谢斌斌, 何宝林. 基于IGWO-PF算法的无人机锂电池SOC估计[J]. 储能科学与技术, 2022, 11(5): 1601-1607. |
[11] | 程广玉, 刘新伟, 梅悦旎, 顾洪汇, 杨丞, 王可. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. |
[12] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[13] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[14] | 乔东格, 刘训良, 温治, 豆瑞峰, 周文宁. 升温和脉冲充电对锂枝晶生长抑制作用的数值分析[J]. 储能科学与技术, 2022, 11(3): 1008-1018. |
[15] | 余春林, 陈旭东, 宫川敏夫, 孙辉, 张兴旺, 童莉葛. 特殊结构前驱体对锂电池三元正极材料性能的提升[J]. 储能科学与技术, 2022, 11(3): 1000-1007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||