1 |
张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27.
|
|
ZHANG Yajun, WANG Hewu, FENG Xuning, et al. Research prograss on thermal runaway combusion characteristics of power lithiumion batteries[J]. Journal of Mechnical Engineering, 2019, 55(20): 17-27.
|
2 |
许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126.
|
|
XU Huiyong, FAN Yaping, ZHANG Zhiping, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126.
|
3 |
DIEKMANN Jan, DOOSE Stefan, WEBER Svenja, et al. Development of a new procedure for nail penetration of lithium-ion cells to obtain meaningful and reproducible results[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab78ff.
|
4 |
HUANG Shan, DU Xiaoniu, RICHTER Mark, et al. Understanding Li-ion cell internal short circuit and thermal runaway through small, slow and in situ sensing nail penetration[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab8878.
|
5 |
LIANG Guozhou, ZHANG Yiming, HAN Qi, et al. A novel 3D-layered electrochemical-thermal coupled model strategy for the nail-penetration process simulation[J]. Journal of Power Sources, 2017, 342: 836-845.
|
6 |
张景涵, 曹冬冬, 门靖宇, 等. 基于锂电池包针刺实验的热失控扩散时间预测[J]. 电源技术, 2019, 43(10): 1649-1652.
|
7 |
LI Hang, KONG Xiangbang, LIU Chaoyue, et al. Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery[J]. Applied Thermal Engineering, 2019, 161: doi: 10.1016/j.applthermaleng.2019.114144.
|
8 |
FENG Xuning, ZHENG Siqi, REN Dongsheng, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
9 |
张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228.
|
|
ZHANG Mingjie, YANG Kai, DUAN Shuning, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltege Engineering, 2017, 43(7): 2221-2228.
|
10 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015.
|
11 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法:GB/T 31467.3—2015[S]. 北京: 中国标准出版社, 2015.
|
12 |
侯奥林. 高镍三元正极材料的制备及改性研究[D]. 郑州: 郑州大学, 2019.
|
13 |
中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB 38031, 2020[S]. 北京: 中国标准出版社, 2020.
|
14 |
KIM Jinyong, MALLARAPU Anudeep, SANTHANAGOPALAN Shriram. Transport processes in a Li-ion cell during an internal short-circuit[J]. Journal of the Electrochemical Society, 2020, 167(9):doi:10.1149/1945-7111/ab995d.
|
15 |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Adv, 2014, 4(7): 3633-3642.
|
16 |
HARRIS S J, TIMMONS A, PITZ W J. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries[J]. Journal of Power Sources, 2009, 193(2): 855-858.
|
17 |
FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
18 |
YAMANO A, MORISHITA M, YANAGIDA M, et al. High-capacity Li-ion batteries using SiO-Si composite anode and li-rich layered oxide cathode: Cell design and its safety evaluation[J]. Journal of the Electrochemical Society, 2015, 162(9): A1730-A1737.
|
19 |
LU Tienyuan, CHIANG Chungcheng, WU Shenghung, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1083-1088.
|
20 |
LIU X, STOLIAROV S I, DENLINGER M, et al. Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery[J]. Journal of Power Sources, 2015, 280: 516-525.
|
21 |
RÖDER P, STIASZNY B, ZIEGLER J C, et al. The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell[J]. Journal of Power Sources, 2014, 268: 315-325.
|
22 |
WALKER W Q, DARST J J, FINEGAN D P, et al. Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods[J]. Journal of Power Sources, 2019, 344: 207-218.
|
23 |
BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351.
|
24 |
SHARIFI-ASL Soroosh, LU Jun, AMINE Khalil, et al. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches[J]. Advanced Energy Materials, 2019, 9(22): doi: 10.1002/aenm.201900551.
|
25 |
吴唐琴. 锂离子电池产热和热诱导失控特性实验研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
WU Tangqin. Experimental study on heat generation and thermal induced runaway of lithium-ion battery[J]. Hefei: University of Scicence and Technology of China, 2018.
|