储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 800-812.doi: 10.19799/j.cnki.2095-4239.2021.0066
收稿日期:
2021-02-25
修回日期:
2021-03-09
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
黄学杰
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
作者简介:
田孟羽(1996—),男,硕士研究生,研究方向为锂离子电池负极材料,E-mail:基金资助:
Mengyu TIAN1,2(), Yuanjie ZHAN2, Yong YAN2, Xuejie HUANG1,2()
Received:
2021-02-25
Revised:
2021-03-09
Online:
2021-05-05
Published:
2021-04-30
Contact:
Xuejie HUANG
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
摘要:
锂离子电池在化成过程中,负极SEI膜的形成会消耗大量活性锂,特别是在添加部分高容量硅基负极材料的情况下,导致电池首周库仑效率和电池容量低。补充活性锂是解决这一问题的有效手段,目前已报道的补充活性锂的途径很多,主要是负极补锂和正极极补锂两大类。负极补锂包括金属锂物理混合锂化,如在负极中添加金属锂粉或在极片表面辊压金属锂箔;化学锂化,使用丁基锂等锂化剂对负极进行化学预嵌锂;自放电锂化,负极与金属锂在电解液中接触完成自放电锂化;电化学预锂化,在电池中引入金属锂作为第三极,负极与金属锂第三极组成对电极充放电完成预锂化。正极补锂是向锂离子电池的正极中添加具有高不可逆容量的含锂化合物,根据化合物的种类不同,可以分为以Li2O、Li2O2、Li2S为代表的二元含锂化合物,以Li6CoO4、Li5FeO4为代表的三元含锂化合物和以Li2DHBN、Li2C2O4为代表的有机含锂化合物。补锂技术的应用不仅提高了锂离子电池的容量,还可以提升含硅负极电池的循环寿命。本文总结了补锂技术的发展状况和本课题组在补锂技术方面的一些工作,并展望了补锂技术在锂离子电池中的应用前景。
中图分类号:
田孟羽, 詹元杰, 闫勇, 黄学杰. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812.
Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812.
1 | KULOVA T L, SKUNDIN A M. Irreversible capacity elimination via immediate contact of carbon with lithium metal[J]. Journal of Solid State Electrochemistry, 2003, 8(1): 59-65. |
2 | KULOVA T L, SKUNDIN A M. Elimination of irreversible capacity of amorphous silicon: Direct contact of the silicon and lithium metal[J]. Russian Journal of Electrochemistry, 2010, 46(4): 470-475. |
3 | KULOVA T L. Minimal irreversible capacity caused by the lithium insertion into materials of negative electrodes in lithium-ion batteries[J]. Russian Journal of Electrochemistry, 2011, 47(8): 965-967. |
4 | SUN H, HE X M, REN J G, et al. Hard carbon/lithium composite anode materials for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(13): 4312-4316. |
5 | XU H, LI S, ZHANG C, et al. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries[J]. Energy & Environmental Science, 2019, 12(10): 2991-3000. |
6 | PARK M S, YOON W Y. Characteristics of a Li/MnO2 battery using a lithium powder anode at high-rate discharge[J]. Journal of Power Sources, 2003, 114(2): 237-243. |
7 | HONG S T, KIM J S, LIM S J, et al. Surface characterization of emulsified lithium powder electrode[J]. Electrochimica Acta, 2004, 50: 535-539. |
8 | LEE J H, LIM C W, LEE J K, et al. Effect of lithium powder size on the performance of lithium-powder/lithium trivanadate secondary batteries shown via impedance analysis[J]. Electrochimica Acta, 2014, 131: 202-206. |
9 | KIM W S, YOON W Y. Observation of dendritic growth on Li powder anode using optical cell[J]. Electrochimica Acta, 2004, 50(2/3): 541-545. |
10 | XIANG B, WANG L, LIU G, et al. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM[J]. Journal of the Electrochemical Society, 2013, 160(3): A415-A419. |
11 | VAUGHEY J T, LIU G, ZHANG J G. Stabilizing the surface of lithium metal[J]. MRS Bulletin, 2014, 39(5): 429-435. |
12 | LI Y, FITCH B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry Communications, 2011, 13(7): 664-667. |
13 | CHEAH Y L, ARAVINDAN V, MADHAVI S. Chemical lithiation studies on combustion synthesized V2O5 cathodes with full cell application for lithium ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(8): A1016-A1024. |
14 | COCCIANTELLI J M, MENETRIER M, DELMAS C, et al. Electrochemical and structural characterization of lithium intercalation and deintercalation in the gamma-LiV2O5 bronze[J]. Solid State Ionics, 1992, 50(1/2): 99-105. |
15 | DELMAS C, BRETHES S, MENETRIER M. Omega-LiXV2O5, a new electrode material for rechargeable lithium batteries[J]. Journal of Power Sources, 1990, 310(11): 1425-1430. |
16 | DINES M B. Lithium intercalation via n-butyllithium of layered transition-metal dichalcogenides[J]. Materials Research Bulletin, 1975, 10(4): 287-291. |
17 | GARCIA B, MILLET M, PEREIRA-RAMOS J P, et al. Electrochemical behaviour of chemically lithiated LixV2O5 phases (0.9≤x≤1.6)[J]. Journal of Power Sources, 1999, 81: 670-674. |
18 | SCOTT M G, WHITEHEAD A H, OWEN J R. Chemical formation of a solid electrolyte interface on the carbon electrode of a Li-ion cell[J]. Journal of the Electrochemical Society, 1998, 145(5): 1506-1510. |
19 | MAI L, XU L, HU B, et al. Improved cycling stability of nanostructured electrode materials enabled by prelithiation[J]. Journal of Materials Research, 2010, 25(8): 1413-1420. |
20 | MAI L Q, HU B, CHEN W, et al. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries[J]. Advanced Materials, 2007, 19(21): 3712-3716. |
21 | LIU N, HU L B, MCDOWELL M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. ACS Nano, 2011, 5(8): 6487-6493. |
22 | CHAE C, NOH H J, LEE J K, et al. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode[J]. Advanced Functional Materials, 2014, 24(20): 3036-3042. |
23 | HASSOUN J, LEE K S, SUN Y K, et al. An advanced lithium ion battery based on high performance electrode materials[J]. Journal of the American Chemical Society, 2011, 133(9): 3139-3143. |
24 | BRUTTI S, HASSOUN J, SCROSATI B, et al. A high power Sn-C/C-LiFePO4 lithium ion battery[J]. Journal of Power Sources, 2012, 217: 72-76. |
25 | HASSOUN J, LEE D J, SUN Y K, et al. A lithium ion battery using nanostructured Sn-C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte[J]. Solid State Ionics, 2011, 202(1): 36-39. |
26 | WANG Y, XING G, HAN Z J, et al. Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries[J]. Nanoscale, 2014, 6(15): 8884-8890. |
27 | XU G L, XU Y F, FANG J C, et al. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O4-δ lithium ion battery[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6316-6323. |
28 | MING H, MING J, OH S M, et al. Surfactant-assisted synthesis of Fe2O3 nanoparticles and F-doped carbon modification toward an improved Fe3O4@CFx/LiNi0.5Mn1.5O4 battery[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15499-15509. |
29 | MING H, MING J, KWAK W J, et al. Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability[J]. Electrochimica Acta, 2015, 169: 291-299. |
30 | XING Z, TAN G, YUAN Y, et al. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes[J]. Advanced Materials, 2020, 32(31): doi: 101002/adma.202002403. |
31 | ELAZARI R, SALITRA G, GERSHINSKY G, et al. Li ion cells comprising lithiated columnar silicon film anodes, TiS2 cathodes and fluoroethyene carbonate (FEC) as a critically important component[J]. Journal of the Electrochemical Society, 2012, 159(9): A1440-A1445. |
32 | FRIDMAN K, SHARABI R, ELAZARI R, et al. A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution[J]. Electrochemistry Communications, 2013, 33: 31-34. |
33 | ELAZARI R, SALITRA G, GERSHINSKY G, et al. Rechargeable lithiated silicon-sulfur (SLS) battery prototypes[J]. Electrochemistry Communications, 2012, 14(1): 21-24. |
34 | ELIA G A, NOBILI F, TOSSICI R, et al. Nanostructured tin-carbon/LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature[J]. Journal of Power Sources, 2015, 275: 227-233. |
35 | VERRELLI R, HASSOUN J, FARKAS A, et al. A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery[J]. Journal of Materials Chemistry A, 2013, 1(48): doi: 10.1039/c3ta13960c. |
36 | VERRELLI R, BRESCIA R, SCARPELLINI A, et al. A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode[J]. RSC Advances, 2014, 4(106): 61855-61862. |
37 | SUN X, ZHANG X, ZHANG H, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J]. Journal of Power Sources, 2014, 270: 318-325. |
38 | TSUDA T, ANDO N, HARUKI Y, et al. Study on Li metal deposition, SEI formation on anodes and cathode potential change during the pre-lithiation process in a cell prepared with laminated porous anodes and cathodes[C]//Selected Proceedings from the 233rd Ecs Meeting, 2018: 1507-1515. |
39 | TSUDA T, ANDO N, MITSUHASHI N, et al. Fabrication of porous electrodes with a picosecond pulsed laser and improvement of the rate performance of a porous graphite anode and LiFePO4 cathode[C]//Selected Proceedings from the 232nd Ecs Meeting, 2017: 1391-1397. |
40 | SHANMUKARAJ D, GRUGEON S, LARUELLE S, et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries[J]. Electrochemistry Communications, 2010, 12(10): 1344-1347. |
41 | SUN Y, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, doi: 10.1038/nenergy.2015.8. |
42 | DU J M, WANG W, ENG A Y S, et al. Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: Trade-off between capacity and stability[J]. Nano Letters, 2020, 20(1): 546-552. |
43 | BIE Y, YANG J, WANG J, et al. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries[J]. Chemical Communications, 2017, 53(59): 8324-8327. |
44 | 詹元杰. 正极补锂材料及其在锂离子电池中的应用[D]. 北京: 中国科学院大学, 2018. |
45 | SUN Y M, LEE H W, ZHENG G Y, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501. |
46 | YERSAK T A, TREVEY J E, LEE S H. In situ lithiation of TiS2 enabled by spontaneous decomposition of Li3N[J]. Journal of Power Sources, 2011, 196(22): 9830-9834. |
47 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): doi: 10.1002/aenm.201502534. |
48 | SUN Y, LEE H W, SEH Z W, et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials, 2016, 6(12): doi: 10.1002/aenm.201600154. |
49 | ZHAN Y J, YU H L, BEN L B, et al. Application of Li2S to compensate for loss of active lithium in a Si-C anode[J]. Journal of Materials Chemistry A, 2018, 6(15): 6206-6211. |
50 | LIM Y G, KIM D, LIM J M, et al. Anti-fluorite Li6CoO4 as an alternative lithium source for lithium ion capacitors: An experimental and first principles study[J]. Journal of Materials Chemistry A, 2015, 3(23): 12377-12385. |
51 | NOH M, CHO J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material[J]. Journal of the Electrochemical Society, 2012, 159(8): A1329-A1334. |
52 | JOHNSON C S, KANG S H, VAUGHEY J T, et al. Li2O removal from Li5FeO4: A cathode precursor for lithium-ion batteries[J]. Chemistry of Materials, 2010, 22(3): 1263-1270. |
53 | SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157. |
54 | PARK M S, LIM Y G, HWANG S M, et al. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors[J]. ChemSusChem, 2014, 7(11): 3138-3144. |
55 | PARK H, YOON T, KIM Y U, et al. Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J]. Electrochimica Acta, 2013, 108: 591-595. |
56 | KIM M G, CHO J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell[J]. Journal of Materials Chemistry, 2008, 18(48): 5880-5887. |
57 | PARK M S, LIM Y G, PARK J W, et al. Li2RuO3 as an additive for high-energy lithium-ion capacitors[J]. The Journal of Physical Chemistry C, 2013, 117(22): 11471-11478. |
58 | PARK M S, LIM Y G, KIM J H, et al. A novel lithium-doping approach for an advanced lithium ion capacitor[J]. Advanced Energy Materials, 2011, 1(6): 1002-1006. |
59 | JEZOWSKI P, FIC K, CROSNIER O, et al. Use of sacrificial lithium nickel oxide for loading graphitic anode in Li-ion capacitors[J]. Electrochimica Acta, 2016, 206: 440-445. |
60 | JEŻOWSKI P, FIC K, CROSNIER O, et al. Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors[J]. Journal of Materials Chemistry A, 2016, 4(32): 12609-12615. |
61 | JEŻOWSKI P, CROSNIER O, DEUNF E, et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt[J]. Nature Materials, 2018, 17(2): 167-173. |
62 | SOLCHENBACH S, WETJEN M, PRITZL D, et al. Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells[J]. Journal of the Electrochemical Society, 2018, 165(3): A512-A524. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||