储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 800-812.doi: 10.19799/j.cnki.2095-4239.2021.0066

• 固态离子学与储能专刊 • 上一篇    下一篇

锂离子电池补锂技术

田孟羽1,2(), 詹元杰2, 闫勇2, 黄学杰1,2()   

  1. 1.中国科学院物理研究所,北京 100190
    2.松山湖材料实验室,广州 深圳 523808
  • 收稿日期:2021-02-25 修回日期:2021-03-09 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 黄学杰 E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
  • 作者简介:田孟羽(1996—),男,硕士研究生,研究方向为锂离子电池负极材料,E-mail:tianmengyu18@mails.ucas.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB0104100)

Replenishment technology of the lithium ion battery

Mengyu TIAN1,2(), Yuanjie ZHAN2, Yong YAN2, Xuejie HUANG1,2()   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.Songshan Lake Materials Laboratory, Shenzhen 523808, Guangzhou, China
  • Received:2021-02-25 Revised:2021-03-09 Online:2021-05-05 Published:2021-04-30
  • Contact: Xuejie HUANG E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn

摘要:

锂离子电池在化成过程中,负极SEI膜的形成会消耗大量活性锂,特别是在添加部分高容量硅基负极材料的情况下,导致电池首周库仑效率和电池容量低。补充活性锂是解决这一问题的有效手段,目前已报道的补充活性锂的途径很多,主要是负极补锂和正极极补锂两大类。负极补锂包括金属锂物理混合锂化,如在负极中添加金属锂粉或在极片表面辊压金属锂箔;化学锂化,使用丁基锂等锂化剂对负极进行化学预嵌锂;自放电锂化,负极与金属锂在电解液中接触完成自放电锂化;电化学预锂化,在电池中引入金属锂作为第三极,负极与金属锂第三极组成对电极充放电完成预锂化。正极补锂是向锂离子电池的正极中添加具有高不可逆容量的含锂化合物,根据化合物的种类不同,可以分为以Li2O、Li2O2、Li2S为代表的二元含锂化合物,以Li6CoO4、Li5FeO4为代表的三元含锂化合物和以Li2DHBN、Li2C2O4为代表的有机含锂化合物。补锂技术的应用不仅提高了锂离子电池的容量,还可以提升含硅负极电池的循环寿命。本文总结了补锂技术的发展状况和本课题组在补锂技术方面的一些工作,并展望了补锂技术在锂离子电池中的应用前景。

关键词: 锂离子电池, 负极补锂, 正极补锂

Abstract:

In the process of Li-ion cell formation, a part of the active lithium from the cathode is consumed to form a solid-electrolyte interphase layer on the anode surface, resulting in an irreversible capacity loss. Especially in the case of adding high-capacity silicon-based anode materials to graphite, this kind of active lithium loss leads to an extremely low-first cycle coulomb efficiency and battery capacity. The problem can be effectively solved via the compensation of active lithium. The various ways used to supply active lithium are mainly divided into two categories: anode and cathode prelithiations. Anode prelithiation methods include physical mixing and chemical, self-discharge, and electrochemical pre-lithiations. The physical mixing lithiation method involves the addition of lithium metal powder to the anode or plate lithium metal foil to the anode surface, whereas the solution containing sacrificial lithium-rich compounds, such as butyl lithium, is used to prelithiate the anode in the case of chemical lithiation. Self-discharge lithiation is accomplished by the contact between the anode and lithium metal in the electrolyte. For electrochemical prelithiation, lithium metal is introduced into the battery as the third electrode, and the prelithiation is completed by discharging the anode. In the case of cathode prelithiation, sacrificial lithium-rich compounds with a high irreversible capacity are added to the cathode. Sacrificial lithium-rich compounds can be divided into binary lithium-containing compounds, such as Li2O, Li2O2, and Li2S; ternary lithium-containing compounds, including Li6CoO4 and Li5FeO4; organic lithium-containing compounds represented by Li2DHBN and Li2C2O4. The prelithiation technology can not only increase the capacity of lithium-ion cells but also benefit its cycling performances, especially for cells with silicon-containing anode. In this paper, the recent developments of lithium prelithiation technology are summarized, and several of our own works are introduced. The application prospect of lithium prelithiation technology is also forecasted.

Key words: lithium-ion batteries, anode prelithiation, cathode prelithiation

中图分类号: