1 |
杨续来, 张峥, 曹勇, 等. 高能量密度锂离子电池结构工程化技术探讨[J]. 储能科学与技术, 2020, 9(4): 1127-1136.YANG X L, ZHANG Z, CAO Y, et al. The structural engineering for achieving high energy density Li-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(4): 1127-1136.
|
2 |
GOODRNOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
|
3 |
TARASCON J M, AMAND M. Issues and challenges facing rechargeable lithium batteries[M]//Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific, 2011: 171-179.
|
4 |
WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302.
|
5 |
樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述[J]. 储能科学与技术, 2019, 8(6): 1040-1049.FANG Y P, YAN L Q, JIAN D C, et al. Summary of in-situ detection methods for lithium evolution in lithium-ion battery failure[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049.
|
6 |
CHENG X B, ZHANG Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30(1): 51-72.
|
7 |
杨涛, 刘文凤, 马梦月, 等. 三元锂离子动力电池衰减机理[J]. 应用化学, 2020, 37(10): 1181-1186.YANG T, LIU W F, MA M Y, et al. Attenuation mechanism of ternary lithium-ion power battery[J]. Applied Chemistry, 2020, 37(10): 1181-1186.
|
8 |
孙晓丽, 袁金秀, 张姗姗, 等. 蔬菜藤蔓衍生制备高性能锂离子电池硬碳负极材料[J]. 济南大学学报(自然科学版), 2021(3): 1-8.SUN X L, YUAN J X, ZHANG S S, et al. Preparation of high-performance hard carbon anode materials for lithium-ion batteries derived from vegetable vines[J]. Journal of Jinan University (Natural Science Edition), 2021(3): 1-8.
|
9 |
WU L Q, LI J C, DESHPANDE R D, et al. Aligned TiO2 notube arrays as durable lithium-ion battery negative electrodes[J]. The Journal of Physical Chemistry C, 2012, 116 (35): 18669-18677.
|
10 |
QIU B C, XING M Y, ZHANG J L. Mesoporous TiO2 nocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(16): 5852-5855.
|
11 |
CHANG P-Y, HUANG C-H, DOONG R-A. Ordered mesoporous carbon-TiO2 materials for improved electrochemical performance of lithium ion battery[J]. Carbon, 2012, 50(11): 4259-4268.
|
12 |
POHLMANN S, RAMIREZ-CASTRO C, BALDUCCI A. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction[J]. Journal of the Electrochemical Society, 2015, 5: A5020-A5030.
|
13 |
WANG H J, ZHI L, LIU K Q, et al. Thin-sheet carbon nanomesh with an excellent electrocapacitive performance[J]. Advanced Functional Materials, 2015, 25: 5420-5427.
|
14 |
LI Z, LIU J, JIANG K R, et al. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors[J]. Nano Energy, 2016, 25: 161-169.
|
15 |
SUSANA V, JESUS P, MARC A, et al. Improving performance of electric double layer capacitors with a mixture of ionic liquid and acetonitrile as the electrolyte by using mass-balancing carbon electrodes[J]. Journal of the Electrochemical Society, 2013, 11: A2064-A2069.
|
16 |
MANAVALAN V, DUGGIRALA S R, TATA N R, et al. Electrode mass ratio impact on electrochemical capacitor performance[J]. Electrochimica Acta, 2019, 298: 347-359.
|
17 |
VITOR L M, ROBERTO M T, ANTHONY J R. Design considerations for ionic liquid based electrochemical double layer capacitors[J]. Electrochimica Acta, 2018, 270: 453-460.
|
18 |
LU H, HE L, LI X Y, et al. Ionic liquid-solvent mixture of propylene carbonate and 1,2-dimethoxyethane as electrolyte for electric doublelayer capacitor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 13933-13938.
|