[1] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19.
[2] GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, et al. Lithium-air battery:Promise and challenges[J]. The Journal of Physical Chemistry Letters, 2010, 1(14):2193-2203.
[3] HUMMELSHOJ J S, BLOMQVIST J, DATTA S, et al. Communications:Elementary oxygen electrode reactions in the aprotic Li-air battery[J]. The Journal of Chemical Physics, 2010, 132:71101.
[4] LAOIRE C O, MUKERJEE S, ABRAHAM K M, et al. Elucidating the mechanism of oxygen reduction for lithium-air battery applications[J]. The Journal of Physical Chemistry C, 2009, 113(46):20127-20134.
[5] OGASAWARA T, DÉbart A, HOLZAPFEL M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Society, 2006, 128(4):1390-1393.
[6] LU Y C, GASTEIGER H A, PARENT M C, et al. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries[J]. Electrochemical and Solid-State Letters, 2010, 13(6):A69-A72.
[7] QIU F, HE P, JIANG J, et al. Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries[J]. Chemical Communications, 2016, 52(13):2713-2716.
[8] XU J J, WANG Z L, XU D, et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications, 2013, 4(9):2438.
[9] THOTIYL M M O, FREUNBERGER S A, PENG Z, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12(11):1050-1056.
[10] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10):4303-4418.
[11] CHEN Y, FREUNBERGER S A, PENG Z, et al. Li-O2 battery with a dimethylformamide electrolyte[J]. Journal of the American Chemical Society, 2012, 134(18):7952-7957.
[12] READ J. Characterization of the lithium-oxygen organic electrolyte battery[J]. Journal of the Electrochemical Society, 2002, 149(9):A1190-A1195.
[13] LAOIRE C O, MUKERJEE S, ABRAHAM K M, et al. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery[J]. The Journal of Physical Chemistry C, 2010, 114(19):9178-9186.
[14] ZHOU B, GUO L, ZHANG Y, et al. A high-performance Li-O2 battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode[J]. Advanced Materials, 2017, 29(30):doi:10.1002/adma.201701568.
[15] GAO X, JOVANOV Z P, CHEN Y, et al. Phenol-catalyzed discharge in the aprotic lithium-oxygen battery[J]. Angewandte Chemie International Edition, 2017, 56:6539-6543.
[16] AETUKURI N B, MCCLOSKEY B D, GARCIA J M, et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries[J]. Nature Chemistry, 2015, 7(1):50-56.
[17] ZHANG W, SHEN Y, SUN D, et al. Promoting Li2O2 oxidation via solvent-assisted redox shuttle process for low overpotential Li-O2 battery[J]. Nano Energy, 2016, 30:43-51.
[18] JOHNSON L, LI C, LIU Z, et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries[J]. Nature Chemistry, 2014, 6(12):1091-1099.
[19] LIU R, LEI Y, YU W, et al. Achieving low overpotential lithium-oxygen batteries by exploiting a new electrolyte based on N,N-dimethylpropyleneurea[J]. ACS Energy Letter, 2017, 2(2):313-318.
[20] KWABI D G, BATCHO T P, AMANCHUKWU C V, et al. Chemical instability of dimethyl sulfoxide in lithium-air batteries[J]. The Journal of Physical Chemistry Letters, 2014, 5(16):2850-2856.
[21] SHARON D, AFRI M, NOKED M, et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen[J]. The Journal of Physical Chemistry Letters, 2013, 4(18):3115-3119.
[22] KHETAN A, LUNTZ A, VISWANATHAN V. Trade-offs in capacity and rechargeability in nonaqueous Li-O2 batteries:Solution-driven growth versus nucleophilic stability[J]. The Journal of Physical Chemistry Letters, 2015, 6(7):1254-1259.
[23] YAMASHITA K I, TSUBOI M, ASANO M S, et al. Facile aromatic finkelstein iodination (AFI) reaction in 1, 3-dimethyl-2-imidazolidinone (DMI)[J]. Synthetic Communications, 2012, 42(2):170-175. |