储能科学与技术

• XXXX •    

一种改进的NARX神经网络的锂离子电池荷电状态估算

王语园(), 安盼龙, 惠亮亮   

  1. 陕西铁路工程职业技术学院,陕西 渭南 714000
  • 收稿日期:2021-04-01 修回日期:2021-04-22
  • 作者简介:王语园(1981-),男,硕士,副教授,电力电子与电力传动,38502042@qq.com
  • 基金资助:
    陕西省自然科学基础研究计划项目(2021JM-542);渭南市2019年重点研发科技计划项目(2019-ZDYF-JCYJ-127);陕西铁路工程职业技术学院供电科技创新团队(KJTD201901);陕西铁路工程职业技术学院中青年科技创新人才培育项目(KJRC201905);陕西铁路工程职业技术学院科研基金项目(KY2020-54)

The improved NARX neural network for battery state of charge estimation

Yuyuan WANG(), Panlong AN, Liangliang HUI   

  1. Shaanxi Railway Institute, Weinan 714000, Shaanxi, China
  • Received:2021-04-01 Revised:2021-04-22

摘要:

准确估算锂离子电池的荷电状态(state of charge,SOC)是电动汽车电池管理系统的关键技术之一。文中利用动态非线性自回归模型(nonlinear autoregressive with exogeneous, NARX)来完成SOC的估算。由于NARX模型在训练过程中可能会出现梯度爆炸和梯度消失,导致参数易陷入局部最优,从而影响SOC的估算精度。因此,为了提高模型的估算能力,文中提出了一种新颖的NARX模型。长短期记忆算法(long short-term memories ,LSTM)用来保存NARX模型输出的重要信息,并与当前时刻测量的电池参数共同作为模型的输入向量,完成SOC估算。实验结果表明,所提模型估算的SOC误差控制在1%以内,验证了所提算法的有效性。

关键词: 锂离子电池, 动态非线性自回归模型(nonlinear autoregressive with exogeneous, NARX), 长短期记忆模型(long short-term memories ,LSTM), 荷电状态(state of charge,SOC)

Abstract:

Accurate estimation of state of charge (SOC) of lithium-ion battery is one of the key parameters in battery management system of electric vehicles. The dynamic nonlinear autoregressive with abnormal (NARX) model is used to estimate SOC in this paper. Because of the NARX model may appear gradient explosion and gradient disappearance in the training process, the parameters are easy to fall into local optimum, which affects the estimation accuracy of SOC. Therefore, in order to improve the estimation ability of the model, a novel NARX model is proposed. The long short-term memories (LSTM) algorithm is used to save the important information of NARX model output, and together with the battery parameters measured at the current time are used as the input vectors of the model to complete SOC estimation. Experimental results show that the SOC error of the proposed model is controlled within 1%, which verifies the effectiveness of the proposed algorithm.

Key words: lithium-ion battery, nonlinear autoregressive with abnormal (NARX), long short-term memories (LSTM), state of charge (SOC)