1 |
WEI Meng,YE Min,LI Jiabo,et al.State of charge estimation of lithium-ion batteries using LSTM and NARX neural networks[J].IEEE Access,2020,8:189236-189245.
|
2 |
马向平,靳皓晴,朱奇先,王晓兰.锂离子电池荷电状态的在线融合估计方法[J].兰州理工大学学报,2020,46(05):78-84.
|
|
Ma Xiangping, Jin Haoqing, Zhu Qixian, Wang Xiaolan. Online fusion estimation method for state of charge of lithium ion batteries [J]. Journal of Lanzhou University of technology, 2020,46 (05): 78-84
|
3 |
章军辉,李庆,陈大鹏,赵野.基于自适应UKF的锂离子动力电池状态联合估计[J].东北大学学报(自然科学 版), 2020,41 (11): 1557-1563.
|
|
Zhang Junhui, Li Qing, Chen Dapeng, Zhao Ye. State joint estimation of lithium ion power battery based on adaptive UKF [J]. Journal of Northeast University (NATURAL SCIENCE EDITION), 2020,41 (11): 1557-1563
|
4 |
焦自权,范兴明,张鑫,罗奕,刘阳升.基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J].电工技术学 报,2020,35(18):3979-3993.
|
|
Jiao Ziquan, fan Xingming, Zhang Xin, Luo Yi, Liu Yangsheng. State tracking and residual service life prediction method of lithium ion battery based on improved particle filter algorithm [J]. Acta electrotechnics Sinica, 2020,35 (18): 3979-3993
|
5 |
陈剑,肖振锋,李达伟,罗磊鑫,夏向阳.基于RLS和UKF算法的锂离子电池荷电状态估计[J].电源技术,2020,44(11): 1600-1657.
|
|
Chen Jian, Xiao Zhenfeng, Li Dawei, Luo Leixin, Xia Xiangyang. State of charge estimation of lithium ion battery based on RLS and UKF algorithm [J]. Power technology, 2020,44 (11): 1600-1657
|
6 |
李静,石求军,洪良,刘鹏.基于车辆状态估计的商用车ESC神经网络滑模控制[J].吉林大学学报(工学版),2020,50(05):1545-1555.
|
|
Li Jing, Shi Qiujun, Hong Liang, Liu Peng. Neural network sliding mode control of commercial vehicle ESC based on vehicle state estimation [J]. Journal of Jilin University (Engineering Edition), 2020,50 (05): 1545-1555
|
7 |
Shrivastava P, Soon TK, Idris MYIB, Mekhilef S. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renewable and Sustainable Energy Reviews. 2019;113:109233,DOI: 10.1016/j.rser.2019.06.040.
|
8 |
Zhong F, Li H, Zhong S, Zhong Q, Yin C. An SOC estimation approach based on adaptive sliding mode observer and fractional order equivalent circuit model for lithium-ion batteries. Communications in Nonlinear Science & Numerical Simulation. 2015;24:127-44
|
9 |
Chen C, Xiong R, Shen W. A lithium-ion battery-in-the-loop approach to test and validate multi-scale dual H infinity filters for state of charge and capacity estimation. IEEE Transactions on Power Electronics. 2018;33:332-42.
|
10 |
陈剑,肖振锋,刘顺成,罗磊鑫,夏向阳.基于EKF-SVSF的锂离子电池SOC和SOH准确估计[J].电源技术,2020,44(10):1483-1487.
|
|
Chen Jian, Xiao Zhenfeng, Liu Shuncheng, Luo Leixin, Xia Xiangyang. Accurate estimation of SOC and SOH of Li ion battery based on EKF-SVSF [J]. Power technology, 2020,44 (10): 1483-1487.
|
11 |
陈涛,郭俊文,张芮.基于双UKF滤波器的锂电池SOC-SOH联合估计方法[J].船电技术,2020,40(S1):95-100.
|
|
Chen Tao, Guo Junwen, Zhang Rui. Joint estimation method of lithium battery soc-soh based on dual UKF filters [J]. Marine electric technology, 2020,40 (S1): 95-100
|
12 |
谈发明,张士荣.基于自适应UKF算法的锂电池荷电状态估算策略[J].工业控制计算机,2021,34(01):136-139.
|
|
Tan Faming, Zhang Shirong. State of charge estimation strategy of lithium battery based on adaptive UKF algorithm [J]. Industrial control computer, 2021,34 (01): 136-139
|
13 |
张立佳,徐国宁,赵向阳,杜晓伟,周翔.基于神经网络的老化锂电池SOC估计方法的研究[J].电源学报,2020,18(01):54-60.
|
|
Zhang Lijia, Xu Guoning, Zhao Xiangyang, Du Xiaowei, Zhou Xiang. Research on SOC estimation method of aging lithium battery based on neural network [J]. Acta Sinica Sinica, 2020,18 (01): 54-60.
|
14 |
李嘉波,魏孟,李忠玉,叶敏,焦生杰,徐信芯.一种改进的支持向量机回归的电池状态估计[J].储能科学与技术,2020,9(04): 1200- 1205. Li Jiabo, Wei Meng, Li Zhongyu, ye min, Jiao Shengjie, Xu Xinxin. Battery state estimation based on improved support vector machine regression [J]. Energy storage science and technology, 2020,9 (04): 1200-1205
|
15 |
LH, a KW, CW, JG, XP. Hybrid method based on particle filter and NARX for real-time flow rate estimation in multi-product pipelines. Journal of Process Control. 2020;88:19-31.
|
16 |
Bian C, He H, Yang S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. Energy. 2020;191:116538,DOI: 10.1016/j.energy.2019.
|