储能科学与技术 ›› 2021, Vol. 10 ›› Issue (4): 1338-1343.doi: 10.19799/j.cnki.2095-4239.2021.0144

• 储能材料与器件 • 上一篇    下一篇

磷酸铁锂动力电池常温循环衰减机理分析

刘晓梅1,2(), 姚斌2, 谢乐琼1, 胡乔1, 王莉1, 何向明1()   

  1. 1.清华大学核能与新能源技术研究院,北京 100084
    2.宁德时代新能源科技股份有限公司,福建 宁德 352100
  • 收稿日期:2021-04-06 修回日期:2021-04-26 出版日期:2021-07-05 发布日期:2021-06-25
  • 通讯作者: 何向明 E-mail:Liuxm@catlbattery.com;hexm@mail.tsinghua.edu.cn
  • 作者简介:刘晓梅(1981—),女,博士研究生,研究方向为锂离子电池,E-mail:Liuxm@catlbattery.com
  • 基金资助:
    科技部国际合作项目(2019YFE0010200);科技部重点研发计划项目(2019YFA0705703);清华大学-佛山先进制造研究院基金项目(2019THFS0132);清华大学自主科研计划项目(2019Z02UTY06)

Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures

Xiaomei LIU1,2(), Bin YAO2, Leqiong XIE1, Qiao HU1, Li WANG1, Xiangming HE1()   

  1. 1.Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
    2.Contemporary Amperex Technology Co. , Limited, Ningde 352100, Fujian, China
  • Received:2021-04-06 Revised:2021-04-26 Online:2021-07-05 Published:2021-06-25
  • Contact: Xiangming HE E-mail:Liuxm@catlbattery.com;hexm@mail.tsinghua.edu.cn

摘要:

常温循环寿命是锂离子电池应用的重要指标,磷酸铁锂电池具有阴极结构稳定和电解液成分简单的特点,是研究锂离子电池工作机理的重要手段。研究磷酸铁锂电池的常温衰减机理对于完善锂离子电池衰减机理的认知和电化学性能提升有重要意义。本文以不同健康状态(SOH)的商业化磷酸铁锂电池为样本,研究其常温循环容量衰减的原因。使用电化学微分容量曲线(dQ/dV)分析电芯常温循环过程中的极化变化规律,通过曲线的峰面积变化规律推断电芯容量损失来源,发现电芯的极化虽然随着循环增长,但容量损失主要发生在石墨第3个平台。三电极电芯的电化学阻抗谱显示电芯循环中阳极Rct增长迅速,动力学下降。阴阳极扣电测试发现循环中阴阳极材料的活性没有发生变化。结合以上结果,磷酸铁锂电池常温循环容量损失主要体现为活性锂损失,活性锂损失主要与循环中固体电解质膜(SEI)增厚和电池膨胀应力导致的阳极动力学性能下降相关。动力学不足导致的阳极电位过低加速副反应消耗活性锂。

关键词: 磷酸铁锂, 常温循环, 衰减机理, 活性锂损失, 动力学

Abstract:

Cycle life at ambient temperatures is an important indicator of power battery applications. With a stable cathode and a simple electrolyte, the analysis of the capacity fading mechanism in lithium iron phosphate (LFP) power batteries is of great significance for a comprehensive understanding of capacity fading in these power batteries and for improving electrochemical performance. This study discusses the capacity fading mechanism in ambient cycling based on commercial lithium iron phosphate power batteries at different states of health (SOH). Electrochemical differential capacity analysis is applied to batteries cycled at ambient temperature to determine the polarization alteration. The area charge of peaks on a differential capacity curve is used to analyze the source of the capacity loss. Capacity loss is mainly derived from the reaction of graphite on the third plateau, not from the result of polarization upon cycling. Charge transfer resistance of the anode is found to increase significantly in electrochemical impedance spectroscopy collected on tri-electrode cells. No evident capacity losses of positive and negative electrodes are observed on coin cells whose electrodes were collected from LFP batteries of different SOH, indicating no deterioration in cathode and anode materials. The investigation shows that the capacity fading at ambient temperature cycling is mainly caused by the active lithium loss from side reactions and kinetic fading of the anode. The kinetic fading of the anode is commonly exhibited during the cycles by the thickening of the SEI and stress on the batteries.

Key words: lithium iron phosphate, cycle at ambient temperature, capacity fading mechanism, active lithium loss, kinetic

中图分类号: