1 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22: 587-603.
|
2 |
YANG G, JIANG C Y, HE X M, et al. Synthesis of size-controllable LiFePO4/C cathode material by controlled crystallization[J]. Journal of New Materials for Electrochemical Systems, 2012, 15(2): 75-78.
|
3 |
黄可龙, 吕正中, 刘素琴. 锂离子电池容量损失原因分析[J]. 电池, 2001, 31(3): 142-145.HUANG K L, LYU Z Z, LIU S Q. On capacity fading and its mechanism for lithium-ion batteries[J]. Battery Bimonthly, 2001, 31(3): 142-145.
|
4 |
王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025.WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
|
5 |
ATALAY S, SHEIKH M, MARIANI A, et al. Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction[J]. Journal of Power Sources, 2020, 478: 229026-229034.
|
6 |
MUSSA A S, KLETT M, LINDBERGH G, et al. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells[J]. Journal of Power Sources, 2018, 385: 18-26.
|
7 |
SAUERTEIG D, HANSELMANN N, ARZBERGER A. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 235-247.
|
8 |
YANG G, JIANG C Y, HE X M, et al. Preparation of Li3V2(PO4)3/LiFePO4 composite cathode material for lithium ion batteries[J]. Ionics,2013, 19(9): 1247-1253.
|
9 |
YANG G, JIANG C Y, HE X M, et al. Preparation of V-LiFePO4 cathode material for Li-ion batteries[J]. Ionics, 2012, 18(1/2): 59-64.
|
10 |
YING J R, LEI M, JIANG C Y, et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries[J]. Journal of Power Sources, 2006, 158(1): 543-549.
|
11 |
WANG L, SUN W T, TANG X Y, et al. Nano particle LiFePO4 prepared by solvothermal process[J]. Journal of Power Sources, 2013, 244: 94-100.
|
12 |
PADHI A K, NANJUNDASWARM K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
|
13 |
GOODENOUGH J B, PARK K S. The Li-Ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
14 |
BARRE A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689.
|
15 |
PARK K Y, PARK J W, SEONG W M, et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2020, 468: 228369-228377.
|
16 |
樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述[J]. 储能科学与技术, 2019, 8(6): 1040-1049.FAN Y P, YAN L Q, JIAN D C, et al. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049.
|
17 |
WANG M, LI J J, HE X M, et al. The effect of local current density on electrode design for lithium-ion batteries[J]. Journal of Power Sources, 2012, 207: 127-133.
|
18 |
WANG L, HE X M, SUN W T, et al. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials[J]. Nano Letter, 2012, 12(11): 5632-5636.
|
19 |
HUANG X K, WANG L, LIAO H Y, et al. Charge rate influence on the electrochemical performance of LiFePO4 electrode with redox shuttle additive in electrolyte[J]. Ionics, 2012, 18(5): 501-505.
|
20 |
ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(10): 3647-3667
|
21 |
李丽, 吴锋, 陈实, 等. 锂离子蓄电池容量衰减的研究[J]. 现代化工, 2006, 26(2): 204-206.LI L, WU F, CHEN S, et al. Degradation analysis of commercial lithium-ion batteries[J]. Modern Chemical Industry, 2006, 26(2): 204-206.
|