储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 547-552.doi: 10.19799/j.cnki.2095-4239.2021.0448

• 储能系统与工程 • 上一篇    下一篇

基于VCALB的电池模组液冷管道优化设计

王翔(), 徐晶(), 丁亚军, 丁凡, 徐鑫   

  1. 扬州大学,江苏 扬州 215000
  • 收稿日期:2021-08-27 修回日期:2021-09-09 出版日期:2022-02-05 发布日期:2022-02-08
  • 通讯作者: 王翔,徐晶 E-mail:549253463@qq.com;jingxu@yzu.edu.cn
  • 作者简介:王翔(1996—),男,硕士研究生,研究方向为电池热管理,E-mail:549253463@qq.com
  • 基金资助:
    国家自然科学基金项目(52105344);江苏省六大人才高峰项目(2015-ZBZZ-035)

Optimal design of liquid cooling pipeline for battery module based on VCALB

Xiang WANG(), Jing XU(), Yajun DING, Fan DING, Xin XU   

  1. Yangzhou University, Yangzhou 215000, Jiangsu, China
  • Received:2021-08-27 Revised:2021-09-09 Online:2022-02-05 Published:2022-02-08
  • Contact: Xiang WANG,Jing XU E-mail:549253463@qq.com;jingxu@yzu.edu.cn

摘要:

在电动汽车的电池热管理中,电池模组的最高温度(maximum temperature in battery module,MTBM)和最大温差(maximum temperature difference in battery module,MTDBM)是衡量散热系统最重要的指标。液冷是一种高效的散热方式,但也有温差过大的缺陷。因此,通过仿真研究了入口冷却液流量(inlet coolant flow,ICF)、入口温度(inlet coolant temperature,ICT)、液冷管道的流道高度(liquid-cooled pipe flow channel height,LFCH)以及液冷管道与电池的接触角度(contact angle between liquid cooling pipe and battery,CALB)对MTBM和MTDBM的影响,利用变接触角度(variable contact angle between liquid cooling pipe and battery,VCALB)对电池模组液冷管道的结构进行优化。结果表明:优化后MTBM由40.50 ℃降低至38.47 ℃,降低了5.01%;MTDBM由6.07 ℃降低到3.60 ℃,降幅达40.69%。增加ICF可以降低MTBM和MTDBM,但降低幅度逐渐减小,且会增大压差。增大LFCH、CALB以及降低ICT均能一定程度地降低MTBM,但冷却效果的提升不断减小,且会导致模组内温差过大的问题。本研究针对电池模组中的液冷散热系统温差过大的问题提供一种有效的解决方案,有利于液冷在电池热管理方向的进一步发展。

关键词: 锂电池, 热力学仿真, 液冷散热, 温差

Abstract:

In the battery thermal management of electric vehicles, the maximum temperature (MTBM) and maximum temperature difference (MTDBM) of a battery module are the most important indicators to measure the heat dissipation system. Liquid cooling is an efficient way of dissipating heat, but it also has the defect of excessive temperature difference. Therefore, the influence of inlet coolant flow (ICF), inlet coolant temperature (ICT), liquid-cooled pipe flow channel height (LFCH), and contact angle between the liquid cooling pipe and battery (CALB) on the MTBM and MTDBM is studied through simulation, and the structure of the liquid cooling pipeline of the battery module is optimized by using the variable contact angle between the liquid cooling pipe and battery. The results show that the MTBM of the optimized battery module is reduced from 40.50 ℃ to 38.47 ℃, a decrease of 5.01%, and the MTDBM is reduced from 6.07 ℃ to 3.60 ℃, a decrease of 24.05%. Increasing the ICF can reduce the MTBM and MTDBM, but the decrease of MTBM and MTDBM is gradual and will increase the pressure difference. Increasing the LFCH and CALB and reducing the ICT can all reduce the MTBM to a certain extent; however, the improvement of the cooling effect continues to decrease, and it will cause the problem of excessive temperature difference in the module. Therefore, this research provides an effective solution to the problem of excessive temperature difference in the liquid cooling system in the battery module, which is conducive to the further development of liquid cooling in the direction of battery thermal management.

Key words: lithium battery, thermodynamic simulation, liquid-cooling heat dissipation, temperature difference

中图分类号: