储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2620-2628.doi: 10.19799/j.cnki.2095-4239.2022.0231

• 电化学储能安全专刊 • 上一篇    下一篇

基于液冷电池模组的结构优化与热蔓延抑制

朱佳俊(), 张恒运(), 徐康迪, 徐屾, 李培超   

  1. 上海工程技术大学机械与汽车工程学院,上海 201620
  • 收稿日期:2022-05-05 修回日期:2022-07-09 出版日期:2022-08-05 发布日期:2022-08-03
  • 通讯作者: 张恒运 E-mail:2546391113@qq.com;zhanghengyun@sues.edu.cn
  • 作者简介:朱佳俊(1996—),男,硕士研究生,研究方向为动力电池热管理,E-mail:2546391113@qq.com
  • 基金资助:
    国家自然科学基金(51876113);上海自然科学基金(21ZR1426300)

Study of structure optimization and thermal spread suppression based on liquid-cooled battery modules

Jiajun ZHU(), Hengyun ZHANG(), Kangdi XU, Shen XU, Peichao LI   

  1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2022-05-05 Revised:2022-07-09 Online:2022-08-05 Published:2022-08-03
  • Contact: Hengyun ZHANG E-mail:2546391113@qq.com;zhanghengyun@sues.edu.cn

摘要:

本工作通过数值仿真研究了一种新型液冷壳体结构的电池模组热性能,并通过实验测量验证液冷壳体结构的散热和热蔓延抑制特性。模组由4×5颗圆柱电池和液冷壳体组成,壳体内部设计流道提供液冷散热。仿真模型通过建立电池模组的等效电路子模型(ECM)模拟电池产热,研究壳体内部流道排布对热性能影响,以电池模组最高温度、最大温差和进出口压降作为性能评价指标,并引入期望函数以获得优化的壳体流道排布。基于优化的流道组合制备了一进两出的液冷壳体,组装三元18650真实电池模组进行热性能实验研究。研究发现:一进两出结构的热性能优于一进一出结构,3 C放电速率和1 m/s入口流速下与基准案例相比,最优情形1(短边侧一进两出流道排布)的最高温度增加了0.3%,但温差减少了8.87%,压差减少了66.5%。真实电池模组实验中充放电倍率越大,电池温度越高,汇流排焦耳效应影响越大。降低冷却液温度会导致放电时间变短、电池模组能量效率下降。最后采用高功率电池产热模型模拟热失控,实验发现在热失控功率600 W下相邻电池温度在57.4 ℃,不会发生热失控与热蔓延,即新型液冷壳体兼具散热、均温和热蔓延抑制作用。

关键词: 液冷壳体结构, ECM模型, 流道排布优化, 实验测试, 热蔓延

Abstract:

This study explores the structure of a novel type of liquid-cooled shell battery module using a numerical simulation method. Experiments were used to investigate the liquid-cooled shell structure's heat dissipation and spread suppression characteristics. The module comprised 4 × 5 cylindrical batteries, the liquid-cooled shell, and multiple flow channels inside the shell for the coolant flow. The equivalent circuit model (ECM) of the battery module was established to simulate the battery's heat generation while studying the influence of the internal flow channel arrangement on thermal performance. The maximum temperature, maximum temperature difference, and inlet and outlet pressure drop of the battery module were taken as the performance evaluation indexes, and the expectation function was introduced to obtain the shell's optimal flow channel arrangement. A liquid cooling shell with a single inlet and two outlets was prepared based on the optimized flow channel. A 18650 real battery module was assembled for the thermal performance experimental study. Notably, the thermal performance of the single-in-two-out structure outperformed that of the single-in-one-out structure. Compared with the baseline case, the maximum temperature of the optimized flow channel Case 1 (one in and two out on the short side) increased by 0.3%, but the temperature difference decreased by 8.87%, and the pressure difference decreased by 66.5% under a 3 C discharge and 1 m/s inlet flow rate. In the real battery module experiment, the higher the charge and discharge rates, the higher the battery temperature and the greater the influence of the joule effect of the bus discharge. A low-temperature coolant will lead to low discharge efficiency of the battery module. Finally, a high-power battery heat generation model was used to simulate the thermal runaway. The experimental results revealed that the temperature of adjacent batteries was 57.4 ℃ and that thermal runaway and thermal spread did not occur under 600 W of power. In other words, the new liquid-cooled shell had the functions of both heat dissipation and suppression of thermal propagation.

Key words: liquid-cooled shell structure, ECM model, optimization of flow permutation, experiment test, thermal propagation

中图分类号: