1 |
PATEL J R, RATHOD M K. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries[J]. Journal of Power Sources, 2020, 480: doi:10.1016/j.jpowsour.2020.228820.
|
2 |
RAO Z H, QIAN Z, KUANG Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514-1522.
|
3 |
ARIS A M, SHABANI B. An experimental study of a lithium ion cell operation at low temperature conditions[J]. Energy Procedia, 2017, 110: 128-135.
|
4 |
XIE L, HUANG Y X, LAI H X. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module[J]. Applied Thermal Engineering, 2020, 178: doi:10.1016/j.applthermaleng.2020.115599.
|
5 |
HUANG Y Q, WANG S, LU Y J, et al. Study on a liquid cooled battery thermal management system pertaining to the transient regime[J]. Applied Thermal Engineering, 2020, 180: doi:10.1016/j.applthermaleng.2020.115793.
|
6 |
GAO Y, JIANG J C, ZHANG C P, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356: 103-114.
|
7 |
ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources, 2006, 158(1): 535-542.
|
8 |
LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[J]. Energy Conversion and Management, 2017, 150: 304-330.
|
9 |
江发潮, 章方树, 徐成善, 等. 车用锂离子电池系统热蔓延试验与机理研究[J]. 机械工程学报, 2021, 57(14): 23-31.
|
|
JIANG F C, ZHANG F S, XU C S, et al. Experimental study on the mechanism of thermal runaway propagation in lithium-ion battery pack for electric vehicles[J]. Journal of Mechanical Engineering, 2021, 57(14): 23-31.
|
10 |
GAO S, FENG X N, LU L G, et al. An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel[J]. International Journal of Heat and Mass Transfer, 2019, 135: 93-103.
|
11 |
WANG H B, DU Z M, RUI X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level[J]. Journal of Hazardous Materials, 2020, 393: doi:10.1016/j.jhazmat.2020.122361.
|
12 |
ZHANG F S, FENG X N, XU C S, et al. Thermal runaway front in failure propagation of long-shape lithium-ion battery[J]. International Journal of Heat and Mass Transfer, 2022, 182: doi:10.1016/j.ijheatmasstransfer.2021.121928.
|
13 |
HUANG Z H, LI X, WANG Q S, et al. Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes[J]. International Journal of Heat and Mass Transfer, 2021, 172: doi: 10.1016/j.ijheatmasstransfer.2021.121077.
|
14 |
RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571.
|
15 |
LINDGREN J, LUND P D. Effect of extreme temperatures on battery charging and performance of electric vehicles[J]. Journal of Power Sources, 2016, 328: 37-45.
|
16 |
WU Y, KEIL P, SCHUSTER S F, et al. Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2Lithium-ion pouch cell[J]. Journal of the Electrochemical Society, 2017, 164(7): doi: 10.1149/2.0401707jes.
|
17 |
雷治国, 张承宁, 李军求, 等. 电动车用锂离子电池低温性能研究[J]. 汽车工程, 2013, 35(10): 927-933.
|
|
LEI Z G, ZHANG C N, LI J Q, et al. A study on the low-temperature performance of lithium-ion battery for electric vehicles[J]. Automotive Engineering, 2013, 35(10): 927-933.
|
18 |
LIAO L X, ZUO P J, MA Y L, et al. Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries[J]. Electrochimica Acta, 2012, 60: 269-273.
|
19 |
CHEN K, WU W X, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167: 781-790.
|
20 |
CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi:10.1016/j.ijheatmasstransfer.2020.120434.
|
21 |
LIU Y Z, ZHANG J. Design a J-type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252: doi:10.1016/j.apenergy.2019.113426.
|
22 |
DAS H S, RAHMAN M M, LI S, et al. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review[J]. Renewable and Sustainable Energy Reviews, 2020, 120: doi:10.1016/j.rser.2019.109618.
|
23 |
EL IDI M M, KARKRI M, ABDOU TANKARI M. A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations[J]. International Journal of Heat and Mass Transfer, 2021, 169: doi:10.1016/j.ijheatmasstransfer.2020.120894.
|
24 |
LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019, 144: doi:10.1016/j.ijheatmasstransfer.2019.118581.
|
25 |
ZHAO C R, SOUSA A C M, JIANG F M. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 129: 660-670.
|
26 |
ZHONG G B, LI H, WANG C, et al. Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2018, 165(9): doi:10.1149/2.0461809jes.
|
27 |
WANG W H, HE T F, HE S, et al. Modeling of thermal runaway propagation of NMC battery packs after fast charging operation[J]. Process Safety and Environmental Protection, 2021, 154: 104-117.
|
28 |
吴笑宇, 张恒运, 朱泽华, 等. 电池模组轴向-径向协同散热的数值分析[J]. 工程热物理学报, 2020, 41(7): 1784-1791.
|
|
WU X Y, ZHANG H Y, ZHU Z H, et al. Numerical investigation of a liquid cooled battery module with collaborative heat dissipation in both axial and radial directions[J]. Journal of Engineering Thermophysics, 2020, 41(7): 1784-1791.
|
29 |
吴青余, 张恒运, 李俊伟. 校准量热法测量锂电池比热容和生热率[J]. 汽车工程, 2020, 42(1): 59-65.
|
|
WU Q Y, ZHANG H Y, LI J W. Calibrated calorimetry for measuring the specific heat capacity and heat generation rate of lithium-ion battery[J]. Automotive Engineering, 2020, 42(1): 59-65.
|
30 |
JHU C Y, WANG Y W, SHU C M, et al. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter[J]. Journal of Hazardous Materials, 2011, 192(1): 99-107.
|