储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2565-2574.doi: 10.19799/j.cnki.2095-4239.2023.0267

• 储能系统与工程 • 上一篇    下一篇

基于改进海洋捕食者算法的配电网储能多目标优化配置

肖小龙1(), 史明明1, 周琦1, 魏于凯2, 赵波2()   

  1. 1.国网江苏省电力有限公司电力科学研究院,江苏 南京 211103
    2.北京信息科技大学,北京 100192
  • 收稿日期:2023-04-23 修回日期:2023-05-04 出版日期:2023-08-05 发布日期:2023-08-23
  • 通讯作者: 赵波 E-mail:ethan518@126.com;lingshanisland@126.com
  • 作者简介:肖小龙(1990—),男,硕士,工程师,主要从事交直流配电网、配电自动化相关工作,E-mail:ethan518@126.com
  • 基金资助:
    国网江苏省电力有限公司科技项目资助(J2022040)

Multiobjective optimization configuration of energy storage in distribution networks based on improved marine predator algorithm

Xiaolong XIAO1(), Mingming SHI1, Qi ZHOU1, Yukai WEI2, Bo ZHAO2()   

  1. 1.State Grid Jiangsu Electric Power Co. , Ltd. Research Institute, Nanjing 211103, Jiangsu, China
    2.Beijing Information Science and Technology University, Beijing 100192, China
  • Received:2023-04-23 Revised:2023-05-04 Online:2023-08-05 Published:2023-08-23
  • Contact: Bo ZHAO E-mail:ethan518@126.com;lingshanisland@126.com

摘要:

分布式电源(distributed generation,DG)的大量接入是配电网重要发展趋势之一,而储能系统的合理配置是提升配电网接纳DG能力的重要手段。本工作考虑高比例DG接入配电网造成电能质量下降问题,建立使配电网电压偏移最小、线损率最低、储能规划成本最优三个指标的储能多目标优化配置模型;针对目前侧重改进传统优化算法求解储能配置多目标优化问题性能不足方面,采用一种基于快速非支配排序和边界交叉构造权重设置参考点的方法对海洋捕食者算法改进,进而求解配电网储能多目标优化模型,得出储能在配电网中的最佳并网位置、额定容量和储能电池调度周期内的充放电功率。通过在IEEE-33节点系统上进行算例分析,结果显示:采用改进的多目标海洋捕食者算法能够有效地求解出在最优储能规划成本下使配电网经济、稳定运行的储能配置方案,及储能电池运行周期内最佳的充放电策略;并且通过对比多种智能优化算法,证明了所提改进海洋捕食者算法在求解储能多目标优化配置问题上具有良好的收敛性能、分布性能。

关键词: 改进海洋捕食者算法, 多目标算法优化, 配电网, 分布式电源, 储能配置

Abstract:

The extensive integration of distributed generation (DG) is one of the vital development trends in distribution networks. The reasonable configuration of energy storage systems is an essential means to enhance the ability of distribution networks to accept DG. This article considers the problem of power quality degradation caused by the high proportion of DG connected to the distribution network and establishes a multiobjective optimization configuration model for energy storage that minimizes voltage deviation, line loss rate, and optimal energy storage planning cost in the distribution network. Because of the shortcomings of the traditional optimization algorithms focusing on improving the performance of solving the multiobjective optimization of energy storage configurations, a method based on fast nondominated sorting and boundary crossing construction weight to set reference points is adopted to improve the marine predator algorithm and then solve multiobjective optimization model of energy storage in the distribution network to obtain the optimal grid connection position, rated capacity, and charging and discharging power of energy storage batteries in the distribution network during the scheduling period. By conducting numerical analysis on an IEEE-33 node system, the improved algorithm can effectively solve the energy storage configuration scheme that ensures stable operation of the distribution network at the optimal planning cost. Moreover, by comparing various intelligent optimization algorithms, the proposed improved algorithm has good convergence and distribution performance in solving multiobjective optimization configuration problems for energy storage.

Key words: improved marine predators algorithm, multi-objective algorithm optimization, distribution networks, distributed generation, energy storage configuration

中图分类号: