储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2575-2584.doi: 10.19799/j.cnki.2095-4239.2023.0119

• 储能系统与工程 • 上一篇    下一篇

基于改进的在线迁移学习算法的电池高压故障预警

董臣臣(), 孙大帅(), 王景龙   

  1. 上海采日能源科技有限公司,上海 201802
  • 收稿日期:2023-03-07 修回日期:2023-04-21 出版日期:2023-08-05 发布日期:2023-08-23
  • 通讯作者: 孙大帅 E-mail:dcc@sermatec-ess.com;sds@sermatec-ess.com
  • 作者简介:董臣臣(1992—),男,工程师,研究方向为电池故障预警,E-mail:dcc@sermatec-ess.com

Battery high-voltage fault early warning based on improved online migration learning algorithm

Chenchen DONG(), Dashuai SUN(), Jinglong WANG   

  1. Shanghai Cairi Energy Technology Co. , Ltd. , Shanghai 201802, China
  • Received:2023-03-07 Revised:2023-04-21 Online:2023-08-05 Published:2023-08-23
  • Contact: Dashuai SUN E-mail:dcc@sermatec-ess.com;sds@sermatec-ess.com

摘要:

锂电池作为一种电化学设备,在发生故障前的特征较为复杂,难以分析,并且生产环境中故障样本数量较少,正负样本比例严重不平衡。针对以上问题,本工作提出基于改进的在线迁移学习算法的电池高压故障预警。首先,引入下采样技术,解决样本不均衡问题,从而降低计算资源的使用。在电池高压故障预警场景下,设计分段下采样策略,使得算法模型在故障发生前能学习到更多细微的特征。其次,提出基于分批增量学习的在线迁移学习方法(homogeneous online transfer learning under incremental training,HomOTL-UIT),源域中训练的离线分类器需要在合适的时间进行更新,以此来适应目标域中不断变化的数据分布,解决数据分布偏移和在线迁移学习退化为在线学习的问题。分批处理降低多次训练带来的计算资源的开销,通过增量学习,不断从目标域中学习,从而不断提高离线分类器的准确度。然后,设计一种滑动窗口下的F1-score评分方法,解决模型权重缓慢失衡问题,从而提高模型的准确性。最后,通过储能集装箱的运行数据验证所提出方法的有效性和准确性,在正负样本严重不均衡时,F1-score达到0.88。

关键词: 电池故障预警, 在线迁移学习, 下采样, 增量学习

Abstract:

Analyzing the characteristics of lithium batteries before failure is a complex task owing to their nature as electrochemical devices. Moreover, the limited number of failure samples in the production environment and the severe imbalance between positive and negative samples pose considerable challenges. To address these issues, this study proposes an improved online migration learning algorithm for early warning of high-voltage battery faults in batteries. First, to solve the problem of sample imbalance and reduce the use of computing resources, down-sampling technology is introduced. Specifically, a subsection down-sampling strategy is designed for the battery high-voltage fault early warning scenario. This strategy allows the algorithm model to learn more detailed features before the fault occurs. Second, an online transfer learning method based on batch incremental learning (homogeneous online transfer learning under incremental training, HomOTL-UIT) is proposed. This method addresses the need to update the offline classifier, which is trained in the source domain, at an appropriate time to adapt to the constantly changing data distribution in the target domain. Furthermore, it solves data distribution deviation issues and prevents the degeneration of online transfer learning into online learning. Batch incremental learning reduces the computing resource cost of multiple training, enabling continuous learning from the target domain and continuously improving the accuracy of offline classifiers over time. Then, a sliding window-based F1-score scoring method is designed to solve the problem of the slow and unbalanced weight of the model to improve its accuracy. Finally, the validity and accuracy of the proposed method are verified using the operation data from an energy storage container. The results demonstrate its effectiveness, particularly when dealing with severely unbalanced positive and negative samples, thereby achieving an impressive F1-score of 0.88.

Key words: battery failure warning, online transfer learning, lower sampling, incremental learning

中图分类号: