储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3155-3169.doi: 10.19799/j.cnki.2095-4239.2023.0358

• 储能测试与评价 • 上一篇    下一篇

基于多新息辨识算法的锂离子电池等效电路模型参数辨识

林鹏1(), 刘涛2, 金鹏3,4,5(), 王震坡3, 王生捷1, 袁红升1, 马泽1, 狄宇1   

  1. 1.北京机械设备研究所,北京 100854
    2.中国人民解放军63936部队,北京 100024
    3.北京 理工大学机械与车辆学院,电动车辆国家工程研究中心,北京 100081
    4.北方工业大学电气与控制工程学院
    5.北京电动车辆协同创新中心,北京 100144
  • 收稿日期:2023-05-25 修回日期:2023-07-20 出版日期:2023-10-05 发布日期:2023-10-09
  • 通讯作者: 金鹏 E-mail:leenzi@163.com;jpzy216@163.com
  • 作者简介:林鹏(1988—),男,博士,高级工程师,研究方向为储能/动力电池建模、电池管理系统,E-mail:leenzi@163.com

Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm

Peng LIN1(), Tao LIU2, Peng JIN3,4,5(), Zhenpo WANG3, Shengjie WANG1, Hongsheng YUAN1, Ze MA1, Yu DI1   

  1. 1.Beijing Mechanical Equipment Institut, Beijing 100854, China
    2.Vehicle Research Institutee, Beijing 100024, China
    3.National Engineering Research Center of Electric Vehicles, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
    4.School of Electrical and Control Engineering, North China University of Technology
    5.Collaborative Innovation Center of Electric Vehicle in Beijing, Beijing 100144, China
  • Received:2023-05-25 Revised:2023-07-20 Online:2023-10-05 Published:2023-10-09
  • Contact: Peng JIN E-mail:leenzi@163.com;jpzy216@163.com

摘要:

实时、准确地获得电池模型的参数可提高电池状态估计的精度。常用的系统辨识算法和智能优化算法不仅实时性差,而且辨识精度低。为了解决等效电路模型的参数辨识及提高等效电路模型参数的辨识精度,本文通过直接离散的方法建立了能够同时辨识二阶RC(resistance-capacitance)等效电路模型和PNGV(partnership for a new generation of vehicles)模型参数的差分方程。基于多新息算法辨识理论,提出了带遗忘因子的多新息辅助模型扩展递推最小二乘(FMIAELS)算法。FMIAELS算法只需利用电池的电流及端电压即可实现等效电路模型参数的实时、精确辨识。实验验证结果表明,在不同温度、工况和老化程度下,FMIAELS算法可精确地辨识电池的模型参数,误差约为常用的系统辨识算法和智能优化算法的1/3。FMIAELS算法也能实现开路电压(OCV)的精确辨识,在不同脉冲下辨识的OCV的精度也明显优于常用的系统辨识算法和智能优化算法,其平均误差仅有0.22%。

关键词: 等效电路模型, 模型参数辨识, 多新息辨识算法, 锂离子电池

Abstract:

This study aims to obtain the battery model parameters in real time and effectively improve the battery state estimation accuracy. The commonly used system identification and intelligent optimization algorithms have poor real-time performances and low identification accuracies. To address the issue on the equivalent circuit model identification and improve the identification accuracy of the equivalent circuit model parameters, this study establishes a difference equation that identifies the parameters of the second-order resistance-capacitance equivalent circuit model and the Partnership for a New Generation of Vehicles model through a direct discretization method. A multi-innovation auxiliary model extended recursive least squares algorithm with a forgetting factor (FMIAELS) is proposed based on the identification theory of the multi-information algorithm. The FMIAELS algorithm realizes a real-time and accurate identification of the equivalent circuit model parameters by using only the current and the terminal voltage of a battery. The experimental verification results demonstrate that the FMIAELS algorithm accurately identifies the battery model parameters under different temperatures, working conditions, and states of health. The error is about 1/3 that of the common system identification and intelligent optimization algorithms. Moreover, the FMIAELS algorithm accurately identifies the open-circuit voltage (OCV). Under various working conditions, its OCV identification accuracy is significantly better than that of the common system identification and intelligent optimization algorithms, yielding only a 0.22% average error.

Key words: equivalent circuit model, model parameter identification, multi-innovation identification algorithm, lithium ion battery

中图分类号: