1 |
中国电力企业联合会. 2022年度电化学储能电站行业统计数据[EB/OL]. [2023-03-15]. https://cec.org.cn/index.html.
|
2 |
GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: 113343.
|
3 |
SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346.
|
4 |
熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J/OL]. 高电压技术: 1-14[2023-08-16]. https://doi.org/10.13336/j.1003-6520.hve.20221843.
|
|
XIONG Q, DI Z G, JI S C. A review of research progress on health state estimation and life prediction of lithium-ion batteries[J/OL]. High Voltage Technology:1-14[2023-08-16]. https://doi.org/10.13336/j.1003-6520.hve.20221843.
|
5 |
LUO K, CHEN X, ZHENG H R, et al. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 159-173.
|
6 |
魏梓轩, 韩晓娟, 李炫. 基于深度神经网络的梯次利用电池健康状态评估[J]. 太阳能学报, 2022, 43(5): 518-524.
|
|
WEI Z X, HAN X J, LI X. State of health assessment for echelon utilization batteries based on deep neural network[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 518-524.
|
7 |
VAN C N, QUANG D T. Estimation of SoH and internal resistances of Lithium ion battery based on LSTM network[J]. International Journal of Electrochemical Science, 2023, 18(6): 100166.
|
8 |
GONG Y D, ZHANG X Y, GAO D Z, et al. State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm[J]. Journal of Energy Storage, 2022, 53: 105046.
|
9 |
GAO M Y, BAO Z Y, ZHU C X, et al. HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery[J]. Energy Reports, 2023, 9: 2577-2590.
|
10 |
LIN M Q, WU J, MENG J H, et al. State of health estimation with attentional long short-term memory network for lithium-ion batteries[J]. Energy, 2023, 268: 126706.
|
11 |
ZHENG Y X, HU J X, CHEN J J, et al. State of health estimation for lithium battery random charging process based on CNN-GRU method[J]. Energy Reports, 2023, 9: 1-10.
|
12 |
孙丙香, 苏晓佳, 马仕昌, 等. 基于低频阻抗谱和健康特征融合的锂离子电池健康状态主动探测方法研究[J]. 电力系统保护与控制, 2022, 50(7): 23-30.
|
|
SUN B X, SU X J, MA S C, et al. An active detection method of li-ion battery health state based on low-frequency EIS and health feature fusion[J]. Power System Protection and Control, 2022, 50(7): 23-30.
|
13 |
ZOU C Y, CHEN X, ZHANG Y D. State of health prediction of lithium-ion batteries based on temporal degeneration feature extraction with deep cycle attention network[J]. Journal of Energy Storage, 2023, 65: 107367.
|
14 |
王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333.
|
|
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion battery based on attention improvement BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333.
|
15 |
JIANG Y Y, CHEN Y, YANG F F, et al. State of health estimation of lithium-ion battery with automatic feature extraction and self-attention learning mechanism[J]. Journal of Power Sources, 2023, 556: 232466.
|
16 |
张帅涛. 基于机器学习的锂电池荷电状态及健康状态预测研究[D]. 桂林: 广西师范大学, 2022.
|
|
ZHANG S T. Research on prediction of state of charge and health of lithium battery based on machine learning[D].Guilin: Guangxi Normal University, 2022.
|
17 |
National Aeronautics and Space Administration Prognostics Center of Excellence. PCoE Datasets [EB/OL].[2023-06-01]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery.
|
18 |
HU X S, CHE Y H, LIN X K, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 382-398.
|
19 |
DUAN W X, SONG S X, XIAO F, et al. Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter[J]. Journal of Energy Storage, 2023, 65: 107322.
|
20 |
XU H W, WU L F, XIONG S Z, et al. An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries[J]. Energy, 2023, 276: 127585.
|
21 |
PARK K, CHOI Y, CHOI W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles[J]. IEEE Access, 2020, 8: 20786-20798.
|
22 |
XU P H, WANG C C, YE J L, et al. State-of-charge estimation and health prognosis for lithium-ion batteries based on temperature-compensated Bi-LSTM network and integrated attention mechanism[J]. IEEE Transactions on Industrial Electronics, 2865, PP(99): 1-11.
|
23 |
董波, 陈艾睿, 张明. 机器学习在解决过拟合现象中的作用[J]. 心理科学, 2021, 44(2): 274-281.
|
|
DONG B, CHEN A R, ZHANG M. The role of machine learning in solving overfitting[J]. Journal of Psychological Science, 2021, 44(2): 274-281.
|
24 |
张孝远, 张金浩, 蒋亚俊. 基于改进TCN模型的动力电池健康状态评估[J]. 储能科学与技术, 2022, 11(5): 1617-1626.
|
|
ZHANG X Y, ZHANG J H, JIANG Y J. Power battery health evaluation based on improved TCN model[J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626.
|