储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3670-3677.doi: 10.19799/j.cnki.2095-4239.2023.0676

• 复合储热专辑 • 上一篇    下一篇

电热相变储能系统的动态储热性能评价

贾亦轩1(), 姜金玉1, 张叶龙1, 宋鹏飞1, 徐桂芝2, 张高群2, 金翼1()   

  1. 1.江苏金合能源科技有限公司,江苏 镇江 212499
    2.北京智慧能源研究院,北京 102209
  • 收稿日期:2023-09-27 修回日期:2023-11-17 出版日期:2023-12-05 发布日期:2023-12-09
  • 通讯作者: 金翼 E-mail:yixuan.jia@jinhe-energy.com;yi.jin@jinhe-energy.com
  • 作者简介:贾亦轩(2000—),男,中级工程师,研究方向为储热材料开发及储热技术应用研究,E-mail:yixuan.jia@jinhe-energy.com
  • 基金资助:
    国网公司科技项目(5419-202134244A-0-0-00)

Evaluation of dynamic-heat-storage performance of electric-thermal phase change energy storage system

Yixuan JIA1(), Jinyu JIANG1, Yelong ZHANG1, Pengfei SONG1, Guizhi XU2, Gaoqun ZHANG2, Yi JIN1()   

  1. 1.Jiangsu Jinhe Energy Technology Company Limited, Zhenjiang 212499, Jiangsu, China
    2.Beijing Institute of Smart Energy (BISE), Beijing 102209, China
  • Received:2023-09-27 Revised:2023-11-17 Online:2023-12-05 Published:2023-12-09
  • Contact: Yi JIN E-mail:yixuan.jia@jinhe-energy.com;yi.jin@jinhe-energy.com

摘要:

本工作以Na2CO3-K2CO3/MgO为储热介质,采用模块化集成思路建立了加热功率100 kW的电热相变储能系统。采用物理方法制备复合储热材料,借助扫描电子显微镜技术(SEM)和差示扫描量热法(DSC)等表征测试手段分析了复合储热材料的组分分布与储热特性。基于储热和放热过程的时间-温度测试曲线引入储热/放热进度函数,并通过研究系统不同位置储热模块的进度函数曲线变化趋势,阐明了系统的动态储热/放热过程。研究发现,储热过程中热风热量的传递是从储热模块中心向顶部聚集,再逐渐向四周扩散;而放热过程中冷风吸热是沿风道方向从前部模块的中心,依次向前部模块、中部模块与后部模块的表面进行。中部与后部储热模块内的热量从中心向底部、侧部和顶部等表面区域传递后向四周扩散。对基于复合相变材料和镁铁氧化物的储热系统的进度函数变化进行了比较分析,发现以复合相变材料作为储热介质时系统具有更快的储热和放热进程。系统的供热水温度设定为70~80 ℃,复合相变储热系统的稳定供热时间为1100 min,比镁铁氧化物储热系统提高了37.5%。本项工作有助于推动相变储热技术在供热系统中的应用,为研究电热相变储能系统中的动态换热过程提供参考依据。

关键词: 储能系统, 相变储热, 电加热, 动态储热过程

Abstract:

This study presents an electric-thermal phase change energy storage system using Na2CO3-K2CO3/MgO as the heat storage medium with a heating power of 100 kW, implemented through a modular integration concept. This research involves the development of composite thermal storage materials using physical methods. Characterization analysis techniques, including scanning electron microscopy and differential scanning calorimetry, are employed to examine the composition distribution and thermal storage properties of the composite materials. By analyzing the time-temperature test curve of the heat storage and release process, we introduce the heat storage or release progress function. Investigating the changing trend of the progress function curves in different positions of the system elucidates the dynamic-heat-storage/-release process. Our findings reveal that heat transfer of hot air accumulates from the center of the heat storage module to the top, gradually diffusing to the periphery during the heat storage process. During heat release, cold air absorbs heat successively from the center of the front module, the front module surface, the middle module surface, and the rear module surface along the wind path direction. Heat in the middle and rear thermal storage modules transfers from the center to the bottom, sides, and top surface areas, thereby diffusing to the surrounding areas. A comparative analysis of the progress functions of the heat storage system based on composite phase change material and magnesium iron oxide indicates that the system experiences faster heat storage and release processes when composite phase change material is employed as the heat storage medium. Setting the heating water temperature at 70—80 ℃, the stable heating time of the composite phase change heat storage system is determined to be 1100 min, representing a 37.5% increase compared to the magnesium iron oxide heat storage system. Therefore, this study helps promote the application of phase change thermal storage technology in heating systems and serves as a reference for studying the dynamic heat exchange process in electric heating phase change energy storage systems.

Key words: energy storage system, phase change storage, electric heating, dynamic thermal storage

中图分类号: