储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 231-239.doi: 10.19799/j.cnki.2095-4239.2023.0687
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
收稿日期:
2023-10-08
修回日期:
2023-12-19
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
徐茂文
E-mail:xlhuang_uestc@163.com;xumaowen@swu.edu.cn
作者简介:
黄祥龙(1998—),男,博士,主要研究方向为室温钠硫电池关键电极材料的设计,E-mail:xlhuang_uestc@163.com;
基金资助:
Xianglong HUANG(), Yi LI, Maowen XU()
Received:
2023-10-08
Revised:
2023-12-19
Online:
2024-01-05
Published:
2024-01-22
Contact:
Maowen XU
E-mail:xlhuang_uestc@163.com;xumaowen@swu.edu.cn
摘要:
室温钠硫电池因其正负极材料丰富的自然资源、低廉的成本和优异的能量密度被视为极具竞争力的电化学储能系统。然而,严重的穿梭效应和缓慢的反应动力学是制约室温钠硫电池可持续发展和实际应用的两大障碍。在硫正极中引入适当的催化剂被广泛证明是一种可以抑制多硫化物的穿梭效应并促进其氧化还原动力学的有效策略,并在近年来成为了该领域的研究焦点。本文从材料设计和优化的角度入手,首先总结了在室温钠硫电池硫正极中被报道的金属、金属氧化物、金属硫化物、金属氮化物、金属碳化物、MXenes、金属单原子及其他在内的各种主流催化剂, 并讨论了调节催化剂的吸附和催化性质的各种有效调节策略,包括尺寸缩减、缺陷工程、电化学钠化及异质结工程等。最后,针对室温钠硫电池正极用催化剂的研究现状指出了其未来的发展趋势,并基于室温钠硫电池面临的重大挑战,从基础理论研究和实用化设计两个层面展望了其未来的发展方向。
中图分类号:
黄祥龙, 李怡, 徐茂文. 室温钠硫电池硫正极催化剂的研究进展[J]. 储能科学与技术, 2024, 13(1): 231-239.
Xianglong HUANG, Yi LI, Maowen XU. Recent advances in cathode catalysts for room-temperature Na-S batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 231-239.
1 | WANG Y X, LAI W H, CHOU S L, et al. Sodium-sulfur batteries: Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries[J]. Advanced Materials, 2020, 32(18): 1903952. |
2 | JIN F, WANG B, WANG J L, et al. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries[J]. Matter, 2021, 4(6): 1768-1800. |
3 | ZHANG S P, YAO Y, YU Y. Frontiers for room-temperature sodium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 529-536. |
4 | HUANG X L, WANG Y X, CHOU S L, et al. Materials engineering for adsorption and catalysis in room-temperature Na-S batteries[J]. Energy & Environmental Science, 2021, 14(7): 3757-3795. |
5 | WU C, LAI W H, CAI X L, et al. Carbonaceous hosts for sulfur cathode in alkali-metal/S (alkali metal=lithium, sodium, potassium) batteries[J]. Small, 2021, 17(48): 2006504. |
6 | WANG Y, HUANG X L, LIU H W, et al. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries[J]. ACS Nano, 2022, 16(4): 5103-5130. |
7 | LEI Y J, LIU H W, YANG Z, et al. A review on the status and challenges of cathodes in room-temperature Na-S batteries[J]. Advanced Functional Materials, 2023, 33(11): 2212600. |
8 | WANG P Y, SUN S M, RUI X H, et al. Polar electrocatalysts for preventing polysulfide migration and accelerating redox kinetics in room-temperature sodium-sulfur batteries[J]. Small Methods, 2023, 7(6): 2201728. |
9 | HUANG X L, DOU S X, WANG Z M. Metal-based electrocatalysts for room-temperature Na-S batteries[J]. Materials Horizons, 2021, 8(11): 2870-2885. |
10 | ZHOU J H, XU S M, YANG Y E. Strategies for polysulfide immobilization in sulfur cathodes for room-temperature sodium-sulfur batteries[J]. Small, 2021, 17(32): 2100057. |
11 | ZHANG B W, SHENG T, LIU Y D, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nature Communications, 2018, 9: 4082. |
12 | YANG H L, ZHOU S, ZHANG B W, et al. Architecting freestanding sulfur cathodes for superior room-temperature Na-S batteries[J]. Advanced Functional Materials, 2021, 31(32): 2102280. |
13 | MOU J R, LI Y J, LIU T, et al. Metal-organic frameworks-derived nitrogen-doped porous carbon nanocubes with embedded co nanoparticles as efficient sulfur immobilizers for room temperature sodium-sulfur batteries[J]. Small Methods, 2021, 5(8): 2100455. |
14 | GUO B S, DU W Y, YANG T T, et al. Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries[J]. Advanced Science, 2020, 7(4): 1902617. |
15 | ZHANG B W, SHENG T A, WANG Y X, et al. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions[J]. Angewandte Chemie International Edition, 2019, 58(5): 1484-1488. |
16 | WANG N N, WANG Y X, BAI Z C, et al. High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion[J]. Energy & Environmental Science, 2020, 13(2): 562-570. |
17 | YAN Z C, TIAN Q, LIANG Y R, et al. Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries[J]. Cell Reports Physical Science, 2021, 2(8): 100539. |
18 | LIU Y P, MA S Y, ROSEBROCK M, et al. Tungsten nanoparticles accelerate polysulfides conversion: A viable route toward stable room-temperature sodium-sulfur batteries[J]. Advanced Science, 2022, 9(11): 2105544. |
19 | WANG L F, WANG H Y, ZHANG S P, et al. Manipulating the electronic structure of nickel via alloying with iron: Toward high-kinetics sulfur cathode for Na-S batteries[J]. ACS Nano, 2021, 15(9): 15218-15228. |
20 | MA D T, LI Y L, YANG J B, et al. New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: Toward ultrastable free-standing room temperature sodium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(11): 1705537. |
21 | ZHOU J H, YANG Y E, ZHANG Y C, et al. Sulfur in amorphous silica for an advanced room-temperature sodium-sulfur battery[J]. Angewandte Chemie International Edition, 2021, 60(18): 10129-10136. |
22 | SAROHA R, HEO J, LIU Y, et al. V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 431: 134205. |
23 | DU W Y, WU Y K, YANG T T, et al. Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries[J]. Chemical Engineering Journal, 2020, 379: 122359. |
24 | ZHANG H, SONG B, ZHANG W W, et al. Bidirectional tandem electrocatalysis manipulated sulfur speciation pathway for high-capacity and stable Na-S battery[J]. Angewandte Chemie International Edition, 2023, 62(6): e202217009. |
25 | ZHANG C Y, LU X, HAN X, et al. Identifying the role of the cationic geometric configuration in spinel catalysts for polysulfide conversion in sodium-sulfur batteries[J]. Journal of the American Chemical Society, 2023, 145(34): 18992-19004. |
26 | HUANG X L, ZHANG X F, ZHOU L J, et al. Orthorhombic Nb2O5 decorated carbon nanoreactors enable bidirectionally regulated redox behaviors in room-temperature Na-S batteries[J]. Advanced Science, 2023, 10(4): 2212600. |
27 | ZHANG C Y, GONG L, ZHANG C Q, et al. Sodium-sulfur batteries with unprecedented capacity, cycling stability and operation temperature range enabled by a CoFe2O4 catalytic additive under an external magnetic field[J]. Advanced Functional Materials, 2023, 33(48): 2305908. |
28 | YE X, LUO S N, LI Z Q, et al. Engineering CoMoO4 in reduced graphene oxide as superior cathode hosts for advanced room-temperature sodium-sulfur batteries[J]. Journal of Energy Chemistry, 2023, 86: 620-627. |
29 | ASLAM M K, SEYMOUR I D, KATYAL N, et al. Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries[J]. Nature Communications, 2020, 11: 5242. |
30 | WANG Y X, LAI Y Y, CHU J, et al. Tunable electrocatalytic behavior of sodiated MoS2 active sites toward efficient sulfur redox reactions in room-temperature Na-S batteries[J]. Advanced Materials, 2021, 33(16): 2100229. |
31 | ZHANG R X, ESPOSITO A M, THORNBURG E S, et al. Conversion of co nanoparticles to CoS in metal-organic framework-derived porous carbon during cycling facilitates Na2S reactivity in a Na-S battery[J]. ACS Applied Materials & Interfaces, 2020: acsami.0c05370. |
32 | MA C S, WANG X A, LAN J Q, et al. Dynamic multistage coupling of FeS2/S enables ultrahigh reversible Na-S batteries[J]. Advanced Functional Materials, 2023, 33(5): 2211821. |
33 | WANG H M, DENG C, LI X L, et al. Designing dual-defending system based on catalytic and kinetic iron Pyrite@C hybrid fibers for long-life room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 420: 129681. |
34 | YAN Z C, XIAO J, LAI W H, et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries[J]. Nature Communications, 2019, 10: 4793. |
35 | WU Y, XU Q, HUANG L, et al. Encapsulation of sulfur in MoS2-modified metal-organic framework-derived N, O-codoped carbon host for sodium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2024, 654: 649-659. |
36 | YAN Z C, LIANG Y R, XIAO J, et al. A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries[J]. Advanced Materials, 2020, 32(8): 1906700. |
37 | QI Y R, LI Q J, WU Y K, et al. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries[J]. Nature Communications, 2021, 12: 6347. |
38 | LI Z, WANG C L, LING F X, et al. Room-temperature sodium-sulfur batteries: Rules for catalyst selection and electrode design[J]. Advanced Materials, 2022, 34(32): 2204214. |
39 | ASLAM M K, HUSSAIN T, TABASSUM H, et al. Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode[J]. Chemical Engineering Journal, 2022, 429: 132389. |
40 | LI Y, WANG X Z, SUN M H, et al. Co4N embedded nitrogen doped carbon with 2D/3D hybrid structure as sulfur host for room-temperature sodium-sulfur batteries[J]. Electrochimica Acta, 2023, 451: 142288. |
41 | YE C, JIN H Y, SHAN J Q, et al. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries[J]. Nature Communications, 2021, 12: 7195. |
42 | TANG W W, ZHONG W, WU Y K, et al. Vanadium carbide nanoparticles incorporation in carbon nanofibers for room-temperature sodium sulfur batteries: Confining, trapping, and catalyzing[J]. Chemical Engineering Journal, 2020, 395: 124978. |
43 | ZHOU X F, YU Z X, YAO Y, et al. A high-efficiency Mo2 C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries[J]. Advanced Materials, 2022, 34(14): e2200479. |
44 | HAO H C, WANG Y X, KATYAL N, et al. Molybdenum carbide electrocatalyst in situ embedded in porous nitrogen-rich carbon nanotubes promotes rapid kinetics in sodium-metal-sulfur batteries[J]. Advanced Materials, 2022, 34(26): 2106572. |
45 | MOU J R, LI Y J, OU L Q, et al. A highly-efficient electrocatalyst for room temperature sodium-sulfur batteries: Assembled nitrogen-doped hollow porous carbon spheres decorated with ultrafine α-MoC1- x nanoparticles[J]. Energy Storage Materials, 2022, 52: 111-119. |
46 | BAO W Z, WANG R H, QIAN C F, et al. Porous heteroatom-doped Ti3C2Tx MXene microspheres enable strong adsorption of sodium polysulfides for long-life room-temperature sodium-sulfur batteries[J]. ACS Nano, 2021, 15(10): 16207-16217. |
47 | JIANG Y, YU Z X, ZHOU X F, et al. Single-atom vanadium catalyst boosting reaction kinetics of polysulfides in Na-S batteries[J]. Advanced Materials, 2023, 35(8): 2208873. |
48 | ZHANG B W, CAO L Y, TANG C, et al. Atomically dispersed dual-site cathode with a record high sulfur mass loading for high-performance room-temperature sodium-sulfur batteries[J]. Advanced Materials, 2023, 35(1): 2206828. |
49 | BAI R L, LIN Q S, LI X Y, et al. Toward complete transformation of sodium polysulfides by regulating the second-shell coordinating environment of atomically dispersed Fe[J]. Angewandte Chemie International Edition, 2023, 62(26): e202218165. |
50 | XIAO F P, WANG H K, XU J, et al. Generating short-chain sulfur suitable for efficient sodium-sulfur batteries via atomic copper sites on a N, O-codoped carbon composite[J]. Advanced Energy Materials, 2021, 11(26): 2100989. |
51 | LIU H W, LAI W H, LIANG Y R, et al. Sustainable S cathodes with synergic electrocatalysis for room-temperature Na-S batteries[J]. Journal of Materials Chemistry A, 2021, 9(1): 566-574. |
52 | FANG D L, GHOSH T, HUANG S Z, et al. Core-shell tandem catalysis coupled with interface engineering for high-performance room-temperature Na-S batteries[J]. Small, 2023, 19(41): 2302461. |
53 | ZHANG E H, HU X A, MENG L Z, et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries[J]. Journal of the American Chemical Society, 2022, 144(41): 18995-19007. |
54 | HUANG Z P, SONG B, ZHANG H, et al. High-capacity and stable sodium-sulfur battery enabled by confined electrocatalytic polysulfides full conversion[J]. Advanced Functional Materials, 2021, 31(17): 2100666. |
55 | GHOSH A, KUMAR A, DAS T, et al. Lewis acid-base interactions between polysulfides and boehmite enables stable room-temperature sodium-sulfur batteries[J]. Advanced Functional Materials, 2020, 30(50): 2005669. |
56 | HE J R, BHARGAV A, SU L S, et al. Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries[J]. Nature Communications, 2023, 14(1): 6568. |
57 | MA Q Y, ZOU H D, HE H L, et al. Enhanced conversion kinetics by constructing boron and nitrogen co-doped porous carbon with sulfurophilic and sodiophilic sites in room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 474: 145954. |
58 | YUAN H, ZHANG Y W. Role of ferroelectric In2Se3 in polysulfide shuttling and charging/discharging kinetics in lithium/sodium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16178-16184. |
59 | KONG F, CHEN L, YANG M R, et al. Investigation of the anchoring and electrocatalytic properties of pristine and doped borophosphene for Na-S batteries[J]. Physical Chemistry Chemical Physics, 2023, 25(7): 5443-5452. |
60 | JAYAN R, ISLAM M M. Mechanistic insights into interactions of polysulfides at VS2 interfaces in Na-S batteries: A DFT study[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35848-35855. |
61 | KUMAR A, GHOSH A, GHOSH A, et al. Sub-zero and room-temperature sodium-sulfur battery cell operations: A rational current collector, catalyst and sulphur-host design and study[J]. Energy Storage Materials, 2021, 42: 608-617. |
62 | LUO S N, RUAN J F, WANG Y, et al. Flower-like interlayer-expanded MoS2- x nanosheets confined in hollow carbon spheres with high-efficiency electrocatalysis sites for advanced sodium-sulfur battery[J]. Small, 2021, 17(37): 2101879. |
63 | QIAN S Y, YUAN Z Y, LI G S, et al. 3D layered structure Ti3C2Tx MXene/Ni(OH)2/C with strong catalytic and adsorption capabilities of polysulfides for high-capacity sodium-sulfur battery[J]. Chemical Engineering Journal, 2023, 471: 144528. |
64 | YE X, RUAN J F, PANG Y P, et al. Enabling a stable room-temperature sodium-sulfur battery cathode by building heterostructures in multichannel carbon fibers[J]. ACS Nano, 2021, 15(3): 5639-5648. |
[1] | 赵晨阳, 于晓琨, 陶于兵. 改性氧化铜/正十八烷复合相变材料制备及性能表征研究[J]. 储能科学与技术, 2024, 13(6): 1786-1793. |
[2] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[3] | 梁宸曦, 王振斌, 张明锦, 马存花, 梁宁. 镁基固态储氢材料的研究进展[J]. 储能科学与技术, 2024, 13(3): 788-824. |
[4] | 杨殷晨, 任山令, 杨志红, 王允辉. 二维硼锑薄膜作为锂硫电池锚定材料的第一性原理研究[J]. 储能科学与技术, 2023, 12(9): 2760-2766. |
[5] | 左安昊, 方儒卿, 李哲. 锂离子电池单颗粒动力学表征方法综述[J]. 储能科学与技术, 2023, 12(8): 2457-2481. |
[6] | 刘书琴, 王小燕, 张振东, 段振霞. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. |
[7] | 李社栋, 宋莹莹, 边煜华, 刘朝孟, 高宣雯, 骆文彬. 室温钠硫电池的发展现状和挑战[J]. 储能科学与技术, 2023, 12(5): 1315-1331. |
[8] | 杨基鹏, 叶强. 基于Bi3+ 过膜缓释策略的在线铋沉积对铁铬液流电池性能的影响[J]. 储能科学与技术, 2023, 12(4): 1075-1082. |
[9] | 田禾青, 寇朝阳, 周俊杰, 余银生. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. |
[10] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[11] | 付殿威, 张灿灿, 娜荷芽, 王国强, 吴玉庭, 鹿院卫. 基于分子动力学的熔盐热物性研究进展[J]. 储能科学与技术, 2023, 12(12): 3873-3882. |
[12] | 沈李园, 张桂鑫, 马兆玲. O-NiCo2S4/CNT复合材料对多硫化锂催化转化性能研究[J]. 储能科学与技术, 2023, 12(11): 3318-3329. |
[13] | 张斌伟, 魏子栋, 孙世刚. 室温钠硫电池硫化钠正极的发展现状与应用挑战[J]. 储能科学与技术, 2022, 11(9): 2811-2824. |
[14] | 宋来丰, 梅文昕, 贾壮壮, 王青松. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. |
[15] | 王宇作, 邓苗, 王瑨, 杨斌, 卢颖莉, 荆葛, 阮殿波. 碳化温度对软碳负极储锂动力学的影响[J]. 储能科学与技术, 2022, 11(6): 1715-1724. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||