1 |
ZHANG X, ZHANG Q, ZHANG Z, et al. Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes[J]. Chemical Communications, 2015, 51(78): 14636-14639. DOI: 10.1039/c5cc05767a.
|
2 |
TAKECHI K, SHIGA T, ASAOKA T. A Li-O2/CO2 battery[J]. Chemical Communications, 2011, 47(12): 3463. DOI: 10.1039/c0cc05176d.
|
3 |
XU S M, DAS S K, ARCHER L A. The Li-CO2 battery: A novel method for CO2 capture and utilization[J]. RSC Advances, 2013, 3(18): 6656-6660. DOI: 10.1039/C3RA40394G.
|
4 |
HOU Y Y, WANG J Z, LIU L L, et al. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries[J]. Advanced Functional Materials, 2017, 27(27): 1700564. DOI: 10.1002/adfm.201700564.
|
5 |
XIE J F, LIU Q, HUANG Y Y, et al. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO[J]. Journal of Materials Chemistry A, 2018, 6(28): 13952-13958. DOI: 10.1039/C8TA02771D.
|
6 |
ZHAO Z W, HUANG J, PENG Z Q. Achilles' heel of lithium–air batteries: Lithium carbonate[J]. Angewandte Chemie International Edition, 2018, 57(15): 3874-3886. DOI: 10.1002/anie.201710156.
|
7 |
MEINI S, TSIOUVARAS N, SCHWENKE K U, et al. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11478-11493. DOI: 10.1039/c3cp51112j.
|
8 |
LI S W, DONG Y, ZHOU J W, et al. Carbon dioxide in the cage: Manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries[J]. Energy & Environmental Science, 2018, 11(5): 1318-1325. DOI: 10.1039/C8EE00415C.
|
9 |
YANG S X, HE P, ZHOU H S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen[J]. Energy & Environmental Science, 2016, 9(5): 1650-1654. DOI: 10.1039/c6ee00004e.
|
10 |
QIAO Y, YI J, WU S C, et al. Li-CO2 electrochemistry: A new strategy for CO2 fixation and energy storage[J]. Joule, 2017, 1(2): 359-370. DOI: 10.1016/j.joule.2017.07.001.
|
11 |
YANG S X, QIAO Y, HE P, et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst[J]. Energy & Environmental Science, 2017, 10(4): 972-978. DOI: 10.1039/C6EE03770D.
|
12 |
QI G C, ZHANG J X, CHEN L, et al. Binder-free MoN nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency[J]. Advanced Functional Materials, 2022, 32(22): 2112501. DOI: 10.1002/adfm.202112501.
|
13 |
LI X L, ZHOU J W, ZHANG J X, et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries[J]. Advanced Materials, 2019, 31(39): e1903852. DOI: 10.1002/adma.201903852.
|
14 |
MA L T, FAN H Q, WANG J, et al. Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance[J]. Applied Catalysis B: Environmental, 2016, 190: 93-102. DOI: 10.1016/j.apcatb.2016.03.002.
|
15 |
XIAO X, TAN P, ZHU X B, et al. Investigation on the discharge and charge behaviors of Li-CO2 batteries with carbon nanotube electrodes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9742-9750. DOI: 10.1021/acssuschemeng.0c01863.
|
16 |
CHEN B, WANG D S, ZHANG B, et al. Engineering the active sites of graphene catalyst: From CO2 activation to activate Li-CO2 batteries[J]. ACS Nano, 2021, 15(6): 9841-9850. DOI: 10.1021/acsnano.1c00756.
|
17 |
XIAO Y, DU F, HU C G, et al. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts[J]. ACS Energy Letters, 2020, 5(3): 916-921. DOI: 10.1021/acsenergylett.0c00181.
|
18 |
YU W, LIU L M, YANG Y X, et al. N, O-diatomic dopants activate catalytic activity of 3D self-standing graphene carbon aerogel for long-cycle and high-efficiency Li-CO2 batteries[J]. Chemical Engineering Journal, 2023, 465: 142787. DOI: 10.1016/j.cej.2023.142787.
|
19 |
SONG L, HU C G, XIAO Y, et al. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts[J]. Nano Energy, 2020, 71: 104595. DOI: 10.1016/j.nanoen.2020.104595.
|
20 |
YE F H, GONG L L, LONG Y D, et al. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries[J]. Advanced Energy Materials, 2021, 11(30): 2101390. DOI: 10.1002/aenm.202101390.
|
21 |
HAN J R, WU H Y, SONG R L, et al. Defect-rich porous carbon as a metal-free catalyst for high-performance Li-CO2 batteries[J]. Electrochimica Acta, 2024, 477: 143779. DOI: 10.1016/j.electacta.2024.143779.
|
22 |
LI J X, ZHANG K, ZHAO Y, et al. High-efficiency and stable Li-CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode[J]. Angewandte Chemie (International Ed), 2022, 61(4): e202114612. DOI: 10.1002/anie.202114612.
|
23 |
XING Y, WANG K, LI N, et al. Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery[J]. Matter, 2020, 2(6): 1494-1508. DOI: 10.1016/j.matt.2020.02.020.
|
24 |
ZHANG Z, YANG C, WU S S, et al. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries[J]. Advanced Energy Materials, 2019, 9(8): 1802805. DOI: 10.1002/aenm.201802805.
|
25 |
XING Y, YANG Y, LI D H, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries[J]. Advanced Materials, 2018, 30(51): e1803124. DOI: 10.1002/adma.201803124.
|
26 |
ZHANG K, LI J X, ZHAI W J, et al. Boosting cycling stability and rate capability of Li-CO2 batteries via synergistic photoelectric effect and plasmonic interaction[J]. Angewandte Chemie International Edition, 2022, 61(17): e202201718. DOI: 10.1002/anie.202201718.
|
27 |
GUAN D H, WANG X X, LI F, et al. All-solid-state photo-assisted Li-CO2 battery working at an ultra-wide operation temperature[J]. ACS Nano, 2022, 16(8): 12364-12376. DOI: 10.1021/acsnano.2c03534.
|
28 |
GUO Z Y, LI J L, QI H C, et al. A highly reversible long-life Li-CO2 battery with a RuP2-based catalytic cathode[J]. Small, 2019, 15(29): 1803246. DOI: 10.1002/smll.201803246.
|
29 |
FAN L, SHEN H M, JI D X, et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries[J]. Advanced Materials, 2022, 34(30): 2204134. DOI: 10.1002/adma.202204134.
|
30 |
ZHANG X, WANG C Y, LI H H, et al. High performance Li-CO2 batteries with NiO-CNT cathodes[J]. Journal of Materials Chemistry A, 2018, 6(6): 2792-2796. DOI: 10.1039/C7TA11015D.
|
31 |
ZHANG Z, WANG X G, ZHANG X, et al. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene[J]. Advanced Science, 2018, 5(2): 1700567. DOI: 10.1002/advs.201700567.
|
32 |
ZHENG R X, SHU C Z, LI J B, et al. Oxygen vacancy engineering of vertically aligned NiO nanosheets for effective CO2 reduction and capture in Li-CO2 battery[J]. Electrochimica Acta, 2021, 383: 138359. DOI: 10.1016/j.electacta.2021.138359.
|
33 |
LIU L M, SHEN S Y, ZHAO N, et al. Revealing the indispensable role of in situ electrochemically reconstructed Mn(II)/Mn(III) in improving the performance of lithium-carbon dioxide batteries[J]. Advanced Materials, 2024, 36(26): 2403229. DOI: 10.1002/adma.202403229.
|
34 |
LI S W, LIU Y, ZHOU J W, et al. Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries[J]. Energy & Environmental Science, 2019, 12(3): 1046-1054. DOI: 10.1039/C8EE03283A.
|
35 |
LIU Y Q, SHU P F, ZHANG M T, et al. Uncovering the geometry activity of spinel oxides in Li-CO2 battery reactions[J]. ACS Energy Letters, 2024, 9(5): 2173-2181. DOI: 10.1021/acsenergylett.4c00603.
|
36 |
ZHU Y B, WEI Y, LI P Z, et al. Type-II heterojunction photocathode for CO2 reduction and light-assisted metal-CO2 batteries[J]. Journal of Materials Chemistry A, 2024, 12(9): 5133-5144. DOI: 10.1039/D3TA07450A.
|
37 |
ZHANG J X, QI G C, CHENG J L, et al. Boosted reaction kinetics of Li-CO2 batteries by atomic layer-deposited Mo2N on hydrogen substituted graphdiyne[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(45): 16185-16193. DOI: 10.1021/acssuschemeng.3c04090.
|
38 |
LU B Y, CHEN B, WANG D S, et al. Engineering the interfacial orientation of MoS2/Co9S8 bidirectional catalysts with highly exposed active sites for reversible Li-CO2 batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(6): e2216933120. DOI: 10.1073/pnas.2216933120.
|
39 |
ZHAO J Y, WANG Y, ZHAO H Y, et al. Enabling all-solid-state lithium-carbon dioxide battery operation in a wide temperature range[J]. ACS Nano, 2024, 18(6): 5132-5140. DOI: 10.1021/acsnano.3c12522.
|
40 |
HU C G, GONG L L, XIAO Y, et al. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms[J]. Advanced Materials, 2020, 32(16): e1907436. DOI: 10.1002/adma.201907436.
|
41 |
XU Y Y, JIANG C, GONG H, et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries[J]. Nano Research, 2022, 15(5): 4100-4107. DOI: 10.1007/s12274-021-4052-1.
|
42 |
DING J C, XUE H R, XIAO R, et al. Atomically dispersed Fe-Nx species within a porous carbon framework: An efficient catalyst for Li-CO2 batteries[J]. Nanoscale, 2022, 14(12): 4511-4518. DOI: 10.1039/D1NR08354F.
|
43 |
CHENG J, BAI Y Q, LIAN Y B, et al. Homogenizing Li2CO3 nucleation and growth through high-density single-atomic Ru loading toward reversible Li-CO2 reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18561-18569. DOI: 10.1021/acsami.2c02249.
|
44 |
MA X Y, ZHAO W T, DENG Q H, et al. In-situ construction of Cu-Co4N@CC hierarchical binder-free cathode for advanced and flexible Li-CO2 batteries: Electron structure and mass transfer modulation[J]. Journal of Power Sources, 2022, 535: 231446. DOI: 10.1016/j.jpowsour.2022.231446.
|
45 |
WANG M L, YAO Y, TIAN Y H, et al. Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction[J]. Advanced Materials, 2023, 35(12): e2210658. DOI: 10.1002/adma.202210658.
|
46 |
WANG X G, WANG C Y, XIE Z J, et al. Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator[J]. ChemElectr℃hem, 2017, 4(9): 2145-2149. DOI: 10.1002/celc.201700539.
|
47 |
SHIGA T, KATO Y, INOUE M, et al. Bifunctional catalytic activity of iodine species for lithium-carbon dioxide battery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14280-14287. DOI: 10.1021/acssuschemeng.9b03949.
|
48 |
SUN X Y, MU X W, ZHENG W, et al. Binuclear Cu complex catalysis enabling Li-CO2 battery with a high discharge voltage above 3.0 V[J]. Nature Communications, 2023, 14(1): 536. DOI: 10.1038/s41467-023-36276-8.
|
49 |
LI W, ZHANG M H, SUN X Y, et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator[J]. Nature Communications, 2024, 15(1): 803. DOI: 10. 1038/s41467-024-45087-4.
|