储能科学与技术

• •    

基于电动汽车无序充电行为的可再生能源系统综合评估及调控策略研究

刘彦廷(), 冯国会(), 常莎莎, 程昱茜, 丁雨鸣   

  1. 沈阳建筑大学市政与环境工程学院,辽宁 沈阳 110168
  • 收稿日期:2025-01-06 修回日期:2025-01-17
  • 通讯作者: 冯国会 E-mail:lyt199542@163.com;fengguohui888@163.com
  • 作者简介:刘彦廷(1995—),男,博士研究生,研究方向:可再生能源应用,E-mail:lyt199542@163.com
  • 基金资助:
    国家自然科学基金区域联合创新基金项目(U23A20657);辽宁省教育厅青年项目(LJ212410153009);辽宁省科技厅博士科研启动基金计划项目(2024-BS-120)

Research on Comprehensive Evaluation and Regulation Strategy of Renewable Energy System Based on Disordered Charging Behavior of Electric Vehicles

Yanting LIU(), Guohui FENG(), Shasha CHANG, Yuqian CHENG, Yuming DING   

  1. School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China
  • Received:2025-01-06 Revised:2025-01-17
  • Contact: Guohui FENG E-mail:lyt199542@163.com;fengguohui888@163.com

摘要:

随着电动汽车渗透率的持续增长,大规模电动汽车介入对电网稳定性造成一定影响。为了更好消纳波动性较强的可再生能源,同时满足不确定的电动汽车充电需求。本文将储能技术与风力、光伏、电网技术相结合并构建了一套可再生能源系统。通过蒙特卡洛抽样方法刻画电动汽车的无序充电行为,将MATLAB与TRNSYS进行耦合并构建系统动态仿真模型。提出了衡量系统性能的评估框架,评估了系统在不同时间跨度、不同技术形式、不同调控策略的综合性能。最后基于三种系统调控策略进行了分析。结果表明,在引入储能技术后,系统全年的能量匹配指标最大提升48.20%,灵活性指标最大降低37.77%,环境效益指标最大降低6.59%。通过有序充电调控,系统的现场能量比(OEF)为66.71%,现场能量匹配(OEM)为73.20%,电网集成水平(GIL)为33.29%,电网净交互水平(NIL)为52.63%。该技术形式可有效实现负荷调控并缓解电网压力,改善电动汽车负荷扰动所带来的供需不匹配问题,降低了需求侧对电网的依赖程度。

关键词: 电动汽车, 可再生能源, 蒙特卡洛, 储能, TRNSYS

Abstract:

As the penetration rate of electric vehicles continues to grow, the large-scale involvement of electric vehicles will have a certain impact on the stability of the power grid. In order to better absorb the highly volatile renewable energy and meet the uncertain charging needs of electric vehicles. This paper combines energy storage technology with wind power, photovoltaic power and grid technology to construct a renewable energy system. The disordered charging behavior of electric vehicles is characterized by the Monte Carlo sampling method, and MATLAB is coupled with TRNSYS to build a system dynamic simulation model. An evaluation framework for measuring system performance is proposed, which evaluates the comprehensive performance of the system in different time scales, different technical forms, and different control strategies. Finally, an analysis was conducted based on three system control strategies. The results show that after the introduction of energy storage technology, the system's annual energy matching index increased by up to 48.20%, the flexibility index decreased by up to 37.77%, and the environmental benefit index decreased by up to 6.59%. Through orderly charging strategy, the system's on-site energy fraction (OEF) is 66.71%, on-site energy matching (OEM) is 73.20%, grid integration level (GIL) is 33.29%, and net interaction level (NIL) is 52.63%. The technology can effectively realize load regulation and relieve the pressure on the power grid, improve the supply-demand mismatch caused by electric vehicle load disturbances and reduce the demand side's dependence on the power grid.

Key words: Electric vehicles, Renewable energy, Monte Carlo, Energy storage, TRNSYS