[1] |
何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2.
|
|
HE Y L. The important role of thermal energy storage technology in the energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2.
|
[2] |
CARABALLO A, GALÁN-CASADO S, CABALLERO Á, et al. Molten salts for sensible thermal energy storage: A review and an energy performance analysis[J]. Energies, 2021, 14(4): 1197. DOI: 10.3390/en14041197.
|
[3] |
WALCZAK M, PINEDA F, FERNÁNDEZ Á G, et al. Materials corrosion for thermal energy storage systems in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2018, 86: 22-44. DOI: 10.1016/j.rser.2018.01.010.
|
[4] |
MOHAN G, VENKATARAMAN M, GOMEZ-VIDAL J, et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy Conversion and Management, 2018, 167: 156-164. DOI: 10.1016/j.enconman.2018.04.100.
|
[5] |
BAUER T, STEINMANN W D, LAING D, et al. Thermal energy storage materials and systems[M]. Annual Review of Heat Transfer, 2012: 131-177.
|
[6] |
BAUER T, PFLEGER N, BREIDENBACH N, et al. Material aspects of solar salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119. DOI: 10.1016/j.apenergy.2013.04.072.
|
[7] |
BAUER T, ODENTHAL C, BONK A. Molten salt storage for power generation[J]. Chemie Ingenieur Technik, 2021, 93(4): 534-546. DOI: 10.1002/cite.202000137.
|
[8] |
BOEREMA N, MORRISON G, TAYLOR R, et al. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems[J]. Solar Energy, 2012, 86(9): 2293-2305. DOI: 10.1016/j.solener.2012.05.001.
|
[9] |
PENG Q, YANG X X, DING J, et al. Design of new molten salt thermal energy storage material for solar thermal power plant[J]. Applied Energy, 2013, 112: 682-689. DOI: 10.1016/j.apenergy. 2012.10.048.
|
[10] |
SAU S, CORSARO N, CRESCENZI T, et al. Techno-economic comparison between CSP plants presenting two different heat transfer fluids[J]. Applied Energy, 2016, 168: 96-109. DOI: 10.1016/j.apenergy.2016.01.066.
|
[11] |
NISSEN D A, MEEKER D E. Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts[J]. Inorganic Chemistry, 1983, 22(5): 716-721. DOI: 10.1021/ic00147a004.
|
[12] |
KUNKEL S, KLASING F, HANKE A, et al. Concentrating solar power at higher limits: First studies on molten nitrate salts at 600 ℃ in a 100 kg-scale hot tank[J]. Solar Energy Materials and Solar Cells, 2023, 258: 112412. DOI: 10.1016/j.solmat.2023. 112412.
|
[13] |
SÖTZ V A, BONK A, FORSTNER J, et al. Microkinetics of the reaction NO3 -⇌NO2 -+0.5O2 in molten sodium nitrate and potassium nitrate salt[J]. Thermochimica Acta, 2019, 678: 178301. DOI: 10.1016/j.tca.2019.178301.
|
[14] |
BONK A, BRAUN M, SÖTZ V A, et al. Solar salt—Pushing an old material for energy storage to a new limit[J]. Applied Energy, 2020, 262: 114535. DOI: 10.1016/j.apenergy.2020.114535.
|
[15] |
STEINBRECHER J, BRAUN M, BAUER T, et al. Solar salt above 600 ℃: Impact of experimental design on thermodynamic stability results[J]. Energies, 2023, 16(14): 5241. DOI: 10.3390/en16145241.
|
[16] |
STEINBRECHER J, BONK A, SÖTZ V A, et al. Investigation of regeneration mechanisms of aged solar salt[J]. Materials, 2021, 14(19): 5664. DOI: 10.3390/ma14195664.
|
[17] |
WANG H Y, LI J L, ZHONG Y, et al. Novel wide-working-temperature NaNO3-KNO3-Na2SO4 molten salt for solar thermal energy storage[J]. Molecules, 2024, 29(10): 2328. DOI: 10.3390/molecules29102328.
|
[18] |
WU Y T, LI Y, REN N, et al. Experimental study on the thermal stability of a new molten salt with low melting point for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells, 2018, 176: 181-189. DOI: 10.1016/j.solmat.2017.12.001.
|
[19] |
BONK A, BRAUN M, HANKE A, et al. Enhancing the thermal stability of solar salt up to 600 ℃ in extended lab-scale experiments[C]// Solarpaces 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2020: 190003. DOI: 10.1063/5.0029151.
|
[20] |
SÖTZ V A, BONK A, BAUER T. With a view to elevated operating temperatures in thermal energy storage—Reaction chemistry of solar salt up to 630 ℃[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110577. DOI: 10.1016/j.solmat.2020.110577.
|
[21] |
OLIVARES R I. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres[J]. Solar Energy, 2012, 86(9): 2576-2583. DOI: 10.1016/j.solener. 2012.05.025.
|
[22] |
AHMAD ALJAERANI H, SAMYKANO M, PANDEY A K, et al. Thermophysical properties enhancement and characterization of CuO nanoparticles enhanced HITEC molten salt for concentrated solar power applications[J]. International Communications in Heat and Mass Transfer, 2022, 132: 105898. DOI: 10.1016/j.icheatmasstransfer.2022.105898.
|
[23] |
VILLADA C, BONK A, BAUER T, et al. High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres[J]. Applied Energy, 2018, 226: 107-115. DOI: 10.1016/j.apenergy.2018.05.101.
|