储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1461-1470.doi: 10.19799/j.cnki.2095-4239.2024.0996

• 储能系统与工程 • 上一篇    下一篇

耦合火电厂灵活改造的卡诺电池储能系统热力学性能研究

于博旭1(), 韩瑞2, 刘倩1, 廖志荣1, 巨星1, 徐超1()   

  1. 1.华北电力大学能源动力与机械工程学院,北京 102206
    2.国电电力发展股份有限公司大同第二发电厂,山西 大同 037043
  • 收稿日期:2024-10-28 修回日期:2024-12-13 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 徐超 E-mail:boxuny@163.com;mechxu@ncepu.edu.cn
  • 作者简介:于博旭(1996—),男,博士研究生,主要研究方向为卡诺电池储能,E-mail:boxuny@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFB2406500);国家自然科学基金项目(52376181)

Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant

Boxu YU1(), Rui HAN2, Qian LIU1, Zhirong LIAO1, Xing JU1, Chao XU1()   

  1. 1.School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
    2.Guodian power Development Co. , Ltd. Datong Second Power Plant, Datong 037043, Shanxi, China
  • Received:2024-10-28 Revised:2024-12-13 Online:2025-04-28 Published:2025-05-20
  • Contact: Chao XU E-mail:boxuny@163.com;mechxu@ncepu.edu.cn

摘要:

将储能技术与电厂改造技术相结合,能够在实现可再生能源稳定并网的同时解决火电机组灵活调峰的问题。本工作将熔盐卡诺电池储能系统与火电厂灵活性改造相结合,基于典型600 MW亚临界燃煤电站,利用Aspen Plus搭建了电厂、热泵储热和抽汽储热耦合的系统模型,分析了火储、火储-热泵联合及热泵三种储热形式在不同储热负荷下储能过程、释能过程及全过程的系统效率、调峰容量及调峰深度的变化情况,并分析了不同储/释能负荷和方案下耦合系统的效率和调峰性能。研究表明,火储储热方式能够在电厂低负荷运行时实现更高的耦合系统效率。热泵储热方式的调峰性能表现更优,其单位储热负荷的最大调峰容量相较于火储储热方式可以提高69%。增加储热模块能够在仅损失少量耦合系统运行效率时显著提高电厂的调峰性能,当电厂满负荷运行且储/释热负荷均为90 MW时,通过火储-热泵联合储热可以使得调峰容量和调峰深度分别增加78.29 MW和13.04%,此时系统效率仅降低0.16%。储能过程抽取中压缸的再热蒸汽并在其释热后送回除氧器,释能过程中通过旁路将部分给水加热送入锅炉,这种火储储热的耦合方式兼顾了蓄热量、调峰容量、调峰深度以及循环效率,是一种优选的耦合方案。本工作有助于指导利用熔盐卡诺电池对火电厂进行灵活性改造。

关键词: 卡诺电池, 火电厂灵活性改造, 熔盐储热, 调峰

Abstract:

The integration of energy storage technology with thermal power plant retrofitting enables stable grid connection of renewable energy and flexible peak shaving of coal-fired units. This study proposes a molten salt Carnot battery energy storage system integrated with a thermal power plant to enhance peak-shaving flexibility. Using a typical 600 MW subcritical coal-fired power plant as a reference, a coupled system model—including the coal-fired power plant, a heat pump thermal energy storage unit, and a steam thermal energy storage unit—is developed using Aspen Plus. The study analyzes the efficiency, peak-shaving capacity, and depth of three thermal energy storage modes- steam thermal energy storage (STES), steam combined with heat pump thermal energy storage (SHPTES), and heat pump thermal energy storage (HPTES) across different operational stages. Additionally, the efficiency and peak-shaving performance of the coupled system under various energy storage and release loads and schemes are evaluated. The results indicate that the STES approach achieves higher coupled system efficiencies when the coal-fired power plant operates at low loads. In contrast, HPTES demonstrates superior peak-shaving performance, with its maximum peak-shaving capacity per unit of heat storage load increasing by 69% compared to STES. The addition of thermal energy storage devices substantially enhances the peak-shaving performance of the coal-fired power plant while causing only a minimal efficiency loss. When operating at a rated load with a heat storage load of 90 MW, the SHPTES approach increases the peak-shaving capacity and depth by 78.29 MW and 13.04%, respectively, with an efficiency loss of only 0.16%. Furthermore, coupling schemes for STES are examined. During energy storage, reheated steam is extracted and returned to the deaerator after heat release. In the energy release process, a portion of the feedwater is heated and directed to the boiler via a bypass. This coupling scheme effectively balances heat storage capacity, peak-shaving capacity and depth, and system efficiency. This study provides valuable guidance for retrofitting coal-fired power plants with molten salt Carnot batteries to improve operational flexibility.

Key words: Carnot battery, thermal power plant retrofitting, molten salt thermal storage, peak shaving

中图分类号: