储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1445-1460.doi: 10.19799/j.cnki.2095-4239.2024.0997
徐桂培1(), 刘浩2,3, 赖洁文1, 卢毅锋1, 黄辉1, 邸会芳2, 王振兵2(
)
收稿日期:
2024-10-28
修回日期:
2024-11-30
出版日期:
2025-04-28
发布日期:
2025-05-20
通讯作者:
王振兵
E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn
作者简介:
徐桂培(1985—),男,本科,主要从事配电生产技术、智能创新工作,E-mail:413536165@qq.com;
Guipei XU1(), Hao LIU2,3, Jiewen LAI1, Yifeng LU1, Hui HUANG1, Huifang DI2, Zhenbing WANG2(
)
Received:
2024-10-28
Revised:
2024-11-30
Online:
2025-04-28
Published:
2025-05-20
Contact:
Zhenbing WANG
E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn
摘要:
干法电极技术因其无溶剂、成本低、机械强度高和对环境友好等优点,被认为是未来高性能储能器件开发的关键技术。本文分析了干法电极技术的原理,归纳总结了干法电极制备中常用黏结剂的性质和应用,阐述了干法电极技术的优点,回顾了干法电极技术的起源和发展历程,介绍了干法电极技术在超级电容器和锂离子电池领域的研究进展。从工艺原理、研究进展、关键设备、关键参数及优缺点对比等方面,重点论述了聚合物纤维化、干法喷涂沉积、气相沉积、热熔挤压、直接压制和3D打印6种干法电极技术。结果表明,目前大规模干法电极制造工艺仍存在挑战,现有工艺普遍存在生产规模小、所需原料需特殊处理以及与现有产线不兼容等共性问题。最后总结了干法电极技术在锂离子电池和超级电容器领域的未来研究方向:开发新型黏结剂、优化干混工艺、调节电极质量负载、优化生产路线和探索新的工艺。本文可为相关领域的科研工作者和技术人员工作的开展提供参考,并为干法电极技术在超级电容器和锂离子电池领域的发展提供方向指导。
中图分类号:
徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460.
Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460.
表2
干法电极与湿法电极的对比"
对比项 | 湿法电极技术 | 干法电极技术 | 参考文献 |
---|---|---|---|
成本 | 电极干燥/溶剂NMP回收相关成本(47%)、材料成本(溶剂占比1%~2%) | 不使用溶剂NMP,无电极干燥和溶剂回收相关成本,总成本降低15% | [ |
对环境的影响 | 有毒溶剂,能耗高,CO2排放量大 | 无溶剂,能耗更低,每生产10 kWh的二氧化碳排放量减少1000 kg | [ |
生产效率 | 7个步骤,干燥、溶剂回收耗时>3 h) | 5个步骤,无需干燥时间,生产时间减少16.2%~21.4% | [ |
能量消耗 | 约47%的总能耗用于干燥和溶剂回收,每生产 10 kWh,干燥和溶剂回收耗电420 Wh | 无干燥和溶剂回收过程,能源成本降低38%~40% | [ |
兼容性 | 不适用于厚电极和固态电极的制备 | 在制备厚电极方面具有显著优势,可用于预锂化,可制备全固态电池的电极 | [ |
电极性能 | 厚电极中的黏结剂表现出梯度变化,颗粒黏附性较差(<4 mAh/cm2),孔隙率更高(4%~10%) | 特定黏结剂分布,倍率性能提高,孔隙率降低,颗粒黏附性更好(>5 mAh/cm2),电极机械强度显著提高 | [ |
表 3
六种干法电极技术的优缺点及应用领域总结"
干法电极技术 | 技术原理 | 优势 | 弊端 | 应用领域 |
---|---|---|---|---|
聚合物纤维化 | PTFE在高剪切力作用下纤维化 | 与现有的生产线兼容,可大规模生产 | 阳极不稳定,目前只能采用PTFE作为黏结剂 | 阴极,碳阳极,全固态电池的电极 |
干法喷涂沉积 | 干粉混合物在高压下沉积 | 电极厚度和密度可控,可用于柔性电极 | 设备昂贵,生产环境要求高 | 阳极,阴极 |
气相沉积 | 材料先蒸发汽化再沉积 | 多种汽化方法可选择 | 生产设备昂贵,规模扩大较难实现 | 小尺寸电极 |
热熔挤压 | 颗粒混合、挤出、脱黏和烧结 | 可制备厚电极 | 工艺复杂,能耗高,需要牺牲黏结剂 | 用于大规模生产的阴极,碳阳极 |
直接压制 | 活性材料充分混合后直接压制为电极 | 操作简单,黏结剂用量小 | 生产规模小,需要活性材料可压缩 | 阴极,阳极,全固态电池电极 |
3D打印 | 材料熔融后逐层打印 | 电极厚度和形貌可定制 | 设备昂贵,生产规模小,活性材料含量低 | 微电子和可穿戴设备用电极 |
1 | LI J L, FLEETWOOD J, BLAKE HAWLEY W, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956. DOI: 10.1021/acs.chemrev.1c00565. |
2 | 滕国营, 王新改, 孟海军, 等. 高功率储能器件的研究进展[J]. 储能科学与技术, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki.2095-4239.2024.0312. |
TENG G Y, WANG X G, MENG H J, et al. Research progress of high-power energy storage devices[J]. Energy Storage Science and Technology, 2024, 13(10): 3442-3452. DOI: 10.19799/j.cnki.2095-4239.2024.0312. | |
3 | 廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. |
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | |
4 | 宋元明, 刘亚杰, 金光, 等. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239.2023.0568. |
SONG Y M, LIU Y J, JIN G, et al. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. DOI: 10.19799/j.cnki.2095-4239. 2023.0568. | |
5 | 李珂, 郝奕帆, 方振华, 等. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. |
LI K, HAO Y F, FANG Z H, et al. Development and military application analysis of high-power chemical power supply system[J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. | |
6 | ZHAN C, CAI F, AMINE K, et al. Advanced lithium batteries for automobile applications at ABAA-9[J]. ACS Energy Letters, 2017, 2(7): 1628-1631. DOI: 10.1021/acsenergylett.7b00407. |
7 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
8 | HAWLEY W B, LI J L. Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing[J]. Journal of Energy Storage, 2019, 25: 100862. DOI: 10.1016/j.est.2019.100862. |
9 | WOOD D L, WOOD M, LI J L, et al. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries[J]. Energy Storage Materials, 2020, 29: 254-265. DOI: 10.1016/j.ensm. 2020.04.036. |
10 | KRAYTSBERG A, EIN-ELI Y. Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills[J]. Advanced Energy Materials, 2016, 6(21): 1600655. DOI: 10.1002/aenm.201600655. |
11 | PETTINGER K H, DONG W. When does the operation of a battery become environmentally positive?[J]. Journal of the Electrochemical Society, 2017, 164(1): A6274-A6277. DOI: 10.1149/2.0401701jes. |
12 | BAUER W, NÖTZEL D, WENZEL V, et al. Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries[J]. Journal of Power Sources, 2015, 288: 359-367. DOI: 10.1016/j.jpowsour.2015.04.081. |
13 | JEONG D, LEE J. Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities[J]. Energy, 2014, 75: 525-533. DOI: 10.1016/j.energy. 2014.08.013. |
14 | LIU J, LUDWIG B, LIU Y T, et al. Scalable dry printing manufacturing to enable long-life and high energy lithium-ion batteries[J]. Advanced Materials Technologies, 2017, 2(10): 1700106. DOI: 10.1002/admt.201700106. |
15 | AL-SHROOFY M, ZHANG Q L, XU J G, et al. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries[J]. Journal of Power Sources, 2017, 352: 187-193. DOI: 10.1016/j.jpowsour. 2017.03.131. |
16 | GAO Z J, FU J Z, PODDER C, et al. Particle interactions during dry powder mixing and their effect on solvent-free manufactured electrode properties[J]. Journal of Energy Storage, 2024, 83: 110605. DOI: 10.1016/j.est.2024.110605. |
17 | KWON K, KIM J, HAN S, et al. Low-resistance LiFePO4 thick film electrode processed with dry electrode technology for high-energy-density lithium-ion batteries[J]. Small Science, 2024, 4(5): 2300302. DOI: 10.1002/smsc.202300302. |
18 | 郭德超, 郭义敏, 张啟文, 等. 锂离子电池用无溶剂干法电极的制备及其性能研究[J]. 储能科学与技术, 2021, 10(4): 1311-1316. DOI: 10.19799/j.cnki.2095-4239.2021.0081. |
GUO D C, GUO Y M, ZHANG Q W, et al. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. DOI: 10.19799/j.cnki.2095-4239.2021.0081. | |
19 | LU Y, ZHAO C Z, YUAN H, et al. Dry electrode technology, the rising star in solid-state battery industrialization[J]. Matter, 2022, 5(3): 876-898. DOI: 10.1016/j.matt.2022.01.011. |
20 | ŻENKIEWICZ M. Methods for the calculation of surface free energy of solids[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 24(1): 137. |
21 | LUDWIG B, LIU J, CHEN I M, et al. Understanding interfacial-energy-driven dry powder mixing for solvent-free additive manufacturing of Li-ion battery electrodes[J]. Advanced Materials Interfaces, 2017, 4(21): 1700570. DOI: 10.1002/admi.201700570. |
22 | ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. DOI: 10.1021/acs.nanolett.1c01344. |
23 | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. DOI: 10.1016/j.ensm.2019.05.033. |
24 | LUDWIG B, ZHENG Z F, SHOU W, et al. Solvent-free manufacturing of electrodes for lithium-ion batteries[J]. Scientific Reports, 2016, 6: 23150. DOI: 10.1038/srep23150. |
25 | HELMERS L, FROBÖSE L, FRIEDRICH K, et al. Sustainable solvent-free production and resulting performance of polymer electrolyte-based all-solid-state battery electrodes[J]. Energy Technology, 2021, 9(3): 2000923. DOI: 10.1002/ente.202000923. |
26 | MAUREL A, ARMAND M, GRUGEON S, et al. Poly(ethylene oxide)–LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing[J]. Journal of the Electrochemical Society, 2020, 167(7): 070536. DOI: 10.1149/1945-7111/ab7c38. |
27 | JARDIEL T, SOTOMAYOR M E, LEVENFELD B, et al. Optimization of the processing of 8-YSZ powder by powder injection molding for SOFC electrolytes[J]. International Journal of Applied Ceramic Technology, 2008, 5(6): 574-581. DOI: 10.1111/j.1744-7402.2008.02286.x. |
28 | DE LA TORRE-GAMARRA C, SOTOMAYOR M E, SANCHEZ J Y, et al. High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries[J]. Journal of Power Sources, 2020, 458: 228033. DOI: 10.1016/j.jpowsour.2020.228033. |
29 | EL KHAKANI S, VERDIER N, LEPAGE D, et al. Melt-processed electrode for lithium ion battery[J]. Journal of Power Sources, 2020, 454: 227884. DOI: 10.1016/j.jpowsour.2020.227884. |
30 | BIN HAMZAH H H, KEATTCH O, COVILL D, et al. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes[J]. Scientific Reports, 2018, 8(1): 9135. DOI: 10.1038/s41598-018-27188-5. |
31 | WOOD D L, QUASS J D, LI J L, et al. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP[J]. Drying Technology, 2018, 36(2): 234-244. DOI: 10.1080/07373937.2017.1319855. |
32 | YAO W L, CHOUCHANE M, LI W K, et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating[J]. Energy & Environmental Science, 2023, 16(4): 1620-1630. DOI: 10.1039/D2EE03840D. |
33 | ZACKRISSON M, AVELLÁN L, ORLENIUS J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues[J]. Journal of Cleaner Production, 2010, 18(15): 1519-1529. DOI: 10.1016/j.jclepro.2010.06.004. |
34 | ERAKCA M, BAUMANN M, BAUER W, et al. Energy flow analysis of laboratory scale lithium-ion battery cell production[J]. iScience, 2021, 24(5): 102437. DOI: 10.1016/j.isci.2021.102437. |
35 | YUAN C, DENG Y L, LI T H, et al. Manufacturing energy analysis of lithium ion battery pack for electric vehicles[J]. CIRP Annals, 2017, 66(1): 53-56. DOI: 10.1016/j.cirp.2017.04.109. |
36 | WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Letters, 2022, 7(1): 410-416. DOI: 10.1021/acsenergylett.1c02261. |
37 | KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613. DOI: 10.1021/acs.jpclett.7b02880. |
38 | BRYNTESEN S N, STRØMMAN A H, TOLSTOREBROV I, et al. Opportunities for the state-of-the-art production of LIB electrodes-a review[J]. Energies, 2021, 14(5): 1406. DOI: 10.3390/en14051406. |
39 | ROLLAG K, JUAREZ-ROBLES D, DU Z J, et al. Drying temperature and capillarity-driven crack formation in aqueous processing of Li-ion battery electrodes[J]. ACS Applied Energy Materials, 2019, 2(6): 4464-4476. DOI: 10.1021/acsaem.9b00704. |
40 | LI Y X, WU Y J, WANG Z X, et al. Progress in solvent-free dry-film technology for batteries and supercapacitors[J]. Materials Today, 2022, 55: 92-109. DOI: 10.1016/j.mattod.2022.04.008. |
41 | ZHANG Y, LU S, WANG Z S, et al. Recent technology development in solvent-free electrode fabrication for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113515. DOI: 10.1016/j.rser.2023.113515. |
42 | 陈艺, 秦琪, 赵龙, 等. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. DOI: 10.19799/j.cnki.2095-4239.2024.0006. |
CHEN Y, QIN Q, ZHAO L, et al. Analysis of China's patent landscape for new energy storage technologies[J]. Energy Storage Science and Technology, 2024, 13(6): 2089-2098. DOI: 10.19799/j.cnki.2095-4239.2024.0006. | |
43 | 何凤荣, 张啟文, 郭德超, 等. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. DOI: 10.19799/j.cnki.2095-4239.2021.0702. |
HE F R, ZHANG Q W, GUO D C, et al. Influences of electrode structure on the electrical properties of(NMC+AC)/HC hybrid capacitor[J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. DOI: 10.19799/j.cnki.2095-4239.2021.0702. | |
44 | 郑超, 周旭峰, 刘兆平, 等. 活性石墨烯/活性炭干法复合电极片制备及其在超级电容器中的应用[J]. 储能科学与技术, 2016, 5(4): 486-491. DOI: 10.12028/j.issn.2095-4239.2016.04.012. |
ZHENG C, ZHOU X F, LIU Z P, et al. Preparation of activated graphene/activated carbon dry composite electrode and its application in supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(4): 486-491. DOI: 10.12028/j.issn.2095-4239.2016.04.012. | |
45 | 刘凤丹, 薛龙均. 成型工艺对超级电容器活性炭电极性能的影响[J]. 电子元件与材料, 2017, 36(2): 25-28. DOI: 10.14106/j.cnki.1001-2028.2017.02.006. |
LIU F D, XUE L J. Influences of the fabrication technology on the properties of activited carbon electrode in ultracapaciors[J]. Electronic Components and Materials, 2017, 36(2): 25-28. DOI: 10.14106/j.cnki.1001-2028.2017.02.006. | |
46 | 郭义敏, 郭德超, 张啟文, 等. 电极纤维化结构对超级电容器电性能的影响[J]. 电子元件与材料, 2021, 40(6): 530-535. DOI: 10.14106/j.cnki.1001-2028.2021.0179. |
GUO Y M, GUO D C, ZHANG Q W, et al. Influences of electrode fibrous structure on the electrical performances of supercapacitor[J]. Electronic Components and Materials, 2021, 40(6): 530-535. DOI: 10.14106/j.cnki.1001-2028.2021.0179. | |
47 | 张凯. 四种活性炭双电层电容器电极制备工艺与电容特性[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
ZHANG K. Study on preparation process and capacitive properties of the supercapacitors based on four activated carbons[D]. Harbin: Harbin Institute of Technology, 2017. | |
48 | BRETON E J, WOLF J D, WORDEN D. Article of fibrillated polytetrafluoroethylene containing high volumes of particulate material and methods of making and using same: US19740499583[P/OL]. 1980-03-18. https://www.freepatentsonline.com/4194040.html. |
49 | SINGER R M. Catalytic dry powder material for fuel cell electrodes comprising fluorocarbon polymer and precatalyzed carbon: US4177159[P/OL]. 1979-12-04. https://www.freepatentsonline.com/4177159.html. |
50 | BERNSTEIN P G R, COFFEY N J, JAMES P. Production of a cell electrode system: US4320184[P/OL]. 1982-03-16. https://www.freepatentsonline.com/4320184.html. |
51 | MITCHELL P S, XI X M, ZOU B, et al. Dry particle packaging systems and methods of making same: US20060246343[P/OL]. 2006-11-02. https://www.freepatentsonline.com/y2006/0246343.html. |
52 | MITCHELL P S, XI X M, ZHONG L D. Recyclable dry-particle based adhesive electrode and methods of making same: US11430613[P/OL]. 2022-08-30. https://www.freepatentsonline.com/11430613.html. |
53 | ZHOU H T, LIU M H, GAO H Q, et al. Dense integration of solvent-free electrodes for Li-ion supercabattery with boosted low temperature performance[J]. Journal of Power Sources, 2020, 473: 228553. DOI: 10.1016/j.jpowsour.2020.228553. |
54 | ZHANG Y D, TIAN J, XIAO F, et al. B cell-activating factor and its targeted therapy in autoimmune diseases[J]. Cytokine & Growth Factor Reviews, 2022, 64: 57-70. DOI: 10.1016/j.cytogfr. 2021.11.004. |
55 | ZHANG Y, LU S, LOU F L, et al. Leveraging synergies by combining polytetrafluorethylene with polyvinylidene fluoride for solvent-free graphite anode fabrication[J]. Energy Technology, 2022, 10(11): 2200732. DOI: 10.1002/ente.202200732. |
56 | ZHONG L. Low cost high performance electrode for energy storage devices and systems and method of making same: US20140238576 [P/OL]. 2014-08-28. https://www.freepatentsonline.com/y2014/0238576.html. |
57 | ZHONG L S, SHAW E, KIM B K. Dry electrode manufacture with lubricated active material mixture: US20220077453[P/OL]. 2022-03-10. https://www.freepatentsonline.com/y2022/0077453.html. |
58 | ZHONG L S, QIU K, ZEA M, SHAW E. Dry electrode manufacture by temperature activation method: US11616218[P/OL]. 2023-03-28. https://www.freepatentsonline.com/11616218.html. |
59 | SASAKI H T, NOGUCHI T. Lithium ion secondary battery: US20150064554[P/OL]. 2015-03-05. https://www.freepatentsonline.com/y2015/0064554.html. |
60 | ORISAKA E N-S, SAKASHITA Y N, NAKATANI R K, et al. Powder supply device for secondary battery and apparatus for manufacturing electrode body: US20150255778A1[P/OL]. 2015-09-10. https://www.freepatentsonline.com/y2015/0255778.html. |
61 | SCHÄLICKE G, LANDWEHR I, DINTER A, et al. Solvent-free manufacturing of electrodes for lithium-ion batteries via electrostatic coating[J]. Energy Technology, 2020, 8(2): 1900309. DOI: 10.1002/ente.201900309. |
62 | WANG M, HU J Z, WANG Y K, et al. The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2 (NMC) electrodes made by a dry-powder-coating process[J]. ECS Meeting Abstracts, 2019, MA2019-02(5): 367. DOI: 10.1149/ma2019-02/5/367. |
63 | SCROSATI B. Recent advances in lithium solid state batteries[J]. Journal of Applied Electrochemistry, 1972, 2(3): 231-238. DOI: 10.1007/BF02354981. |
64 | KANEHORI K, MATSUMOTO K, MIYAUCHI K, et al. Thin film solid electrolyte and its application to secondary lithium cell[J]. Solid State Ionics, 1983, 9: 1445-1448. DOI: 10.1016/0167-2738(83)90192-3. |
65 | HAMPDEN-SMITH M J, KODAS T T. Chemical vapor deposition of metals: Part 1. an overview of CVD processes[J]. Chemical Vapor Deposition, 1995, 1(1): 8-23. DOI: 10.1002/cvde. 19950010103. |
66 | CHIU K F. Lithium cobalt oxide thin films deposited at low temperature by ionized magnetron sputtering[J]. Thin Solid Films, 2007, 515(11): 4614-4618. DOI: 10.1016/j.tsf.2006.11.073. |
67 | SHIRAKI S, OKI H, TAKAGI Y, et al. Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films[J]. Journal of Power Sources, 2014, 267: 881-887. DOI: 10.1016/j.jpowsour. 2014.05.133. |
68 | BOUGUERN M D, MADIKERE RAGHUNATHA REDDY A K, LI X, et al. Engineering dry electrode manufacturing for sustainable lithium-ion batteries[J]. Batteries, 2024, 10(1): 39. DOI: 10.3390/batteries10010039. |
69 | SOTOMAYOR M E, DE LA TORRE-GAMARRA C, LEVENFELD B, et al. Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries[J]. Journal of Power Sources, 2019, 437: 226923. DOI: 10.1016/j.jpowsour. 2019.226923. |
70 | ASTAFYEVA K, DOUSSET C, BUREAU Y, et al. High energy Li-ion electrodes prepared via a solventless melt process[J]. Batteries & Supercaps, 2020, 3(4): 341-343. DOI: 10.1002/batt.201900187. |
71 | WIEGMANN E, CAVERS H, DIENER A, et al. Semi-dry extrusion-based processing for graphite anodes: Morphological insights and electrochemical performance[J]. Energy Technology, 2023, 11(9): 2300341. DOI: 10.1002/ente.202300341. |
72 | KIRSCH DYLAN J, LACEY STEVEN D, KUANG Y D, et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Applied Energy Materials, 2019, 2(5): 2990-2997. |
73 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. DOI: 10.1038/s41560-020-0575-z. |
74 | AUVERGNIOT J, CASSEL A, LEDEUIL J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890. DOI: 10.1021/acs.chemmater.6b04990. |
75 | SUN K, WEI T S, AHN B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials, 2013, 25(33): 4539-4543. DOI: 10.1002/adma.201301036. |
76 | FU K, WANG Y B, YAN C Y, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials, 2016, 28(13): 2587-2594. DOI: 10.1002/adma. 201505391. |
77 | WEI T S, AHN B Y, GROTTO J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials, 2018, 30(16): 1703027. DOI: 10.1002/adma.201703027. |
78 | LYU Z Y, LIM G J H, KOH J J, et al. Design and manufacture of 3D-printed batteries[J]. Joule, 2021, 5(1): 89-114. DOI: 10.1016/j.joule.2020.11.010. |
79 | FU K, YAO Y G, DAI J Q, et al. Progress in 3D printing of carbon materials for energy-related applications[J]. Advanced Materials, 2017, 29(9): 1603486. DOI: 10.1002/adma.201603486. |
80 | ELDER B, NEUPANE R, TOKITA E, et al. Nanomaterial patterning in 3D printing[J]. Advanced Materials, 2020, 32(17): 1907142. DOI: 10.1002/adma.201907142. |
[1] | 彭磊, 倪照鹏, 于越, 孙福鹏, 夏修龙, 张鹏, 孙思博. 过充导致三元锂电池电动汽车火灾的试验研究[J]. 储能科学与技术, 2025, 14(4): 1484-1495. |
[2] | 申江卫, 折亦鑫, 舒星, 刘永刚, 魏福星, 夏雪磊, 陈峥. 基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(4): 1585-1595. |
[3] | 刘瑞昊, 马小乐, 张宇萱, 朱曰莹, 刘仕强, 白广利. 基于绝热量热仪的锂离子电池热物性参数测试影响因素研究[J]. 储能科学与技术, 2025, 14(4): 1596-1602. |
[4] | 董作林, 宋金岩, 孟子迪. 基于模态分解和深度学习的锂离子电池寿命预测[J]. 储能科学与技术, 2025, 14(4): 1645-1653. |
[5] | 岳金明, 刘媛丽, 陈一霞, 禹习谦, 李泓. GC-MS检测锂离子电池电解液分离条件的研究[J]. 储能科学与技术, 2025, 14(4): 1564-1573. |
[6] | 廖兴群, 杨睿, 于立娟, 胡大林, 肖峰, 胡菁, 卢周广. 多功能电解液添加剂2,6-吡啶二甲腈稳定高电压钴酸锂[J]. 储能科学与技术, 2025, 14(4): 1331-1339. |
[7] | 王鹏, 周俊, 伍星, 刘韬. 改进Sine混沌映射CO-ELM锂离子电池RUL预测[J]. 储能科学与技术, 2025, 14(4): 1603-1616. |
[8] | 武小兰, 马彭杰, 白志峰, 刘成龙, 郭桂芳, 张锦华. 一种锂离子电池组智能PID双层主动均衡控制方法[J]. 储能科学与技术, 2025, 14(3): 1150-1159. |
[9] | 曾帅波, 李涌仪, 彭静, 何梓星, 梁倬健, 徐伟, 蓝凌霄, 梁兴华. 基于三元锂离子电池的导电剂优化设计[J]. 储能科学与技术, 2025, 14(3): 1187-1197. |
[10] | 张朝龙, 陈阳, 刘梦玲, 张俣峰, 华国庆, 阴盼昐. 一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2025, 14(3): 1258-1269. |
[11] | 李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009. |
[12] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[13] | 陈会明, 蔡艺嘉, 尹文骥, 陈美芬, 黄有国, 胡思江, 王红强, 李庆余. 铬钼双掺杂调控富锂锰基正极材料结构和电化学性能[J]. 储能科学与技术, 2025, 14(3): 1123-1132. |
[14] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
[15] | 张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||