储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1445-1460.doi: 10.19799/j.cnki.2095-4239.2024.0997

• 储能材料与器件 • 上一篇    下一篇

干法电极技术在超级电容器和锂离子电池中的研究进展

徐桂培1(), 刘浩2,3, 赖洁文1, 卢毅锋1, 黄辉1, 邸会芳2, 王振兵2()   

  1. 1.广东电网有限责任公司云浮供电局,广东 云浮 527300
    2.中国科学院山西煤炭化学研究所,山西 太原 030001
    3.中国科学院大学,北京 100049
  • 收稿日期:2024-10-28 修回日期:2024-11-30 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 王振兵 E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn
  • 作者简介:徐桂培(1985—),男,本科,主要从事配电生产技术、智能创新工作,E-mail:413536165@qq.com

Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries

Guipei XU1(), Hao LIU2,3, Jiewen LAI1, Yifeng LU1, Hui HUANG1, Huifang DI2, Zhenbing WANG2()   

  1. 1.Yunfu Power Supply Bureau of Guangdong Power Grid Corporation, Yunfu 527300, Guangdong, China
    2.Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-10-28 Revised:2024-11-30 Online:2025-04-28 Published:2025-05-20
  • Contact: Zhenbing WANG E-mail:413536165@qq.com;wangzhenbing@sxicc.ac.cn

摘要:

干法电极技术因其无溶剂、成本低、机械强度高和对环境友好等优点,被认为是未来高性能储能器件开发的关键技术。本文分析了干法电极技术的原理,归纳总结了干法电极制备中常用黏结剂的性质和应用,阐述了干法电极技术的优点,回顾了干法电极技术的起源和发展历程,介绍了干法电极技术在超级电容器和锂离子电池领域的研究进展。从工艺原理、研究进展、关键设备、关键参数及优缺点对比等方面,重点论述了聚合物纤维化、干法喷涂沉积、气相沉积、热熔挤压、直接压制和3D打印6种干法电极技术。结果表明,目前大规模干法电极制造工艺仍存在挑战,现有工艺普遍存在生产规模小、所需原料需特殊处理以及与现有产线不兼容等共性问题。最后总结了干法电极技术在锂离子电池和超级电容器领域的未来研究方向:开发新型黏结剂、优化干混工艺、调节电极质量负载、优化生产路线和探索新的工艺。本文可为相关领域的科研工作者和技术人员工作的开展提供参考,并为干法电极技术在超级电容器和锂离子电池领域的发展提供方向指导。

关键词: 锂离子电池, 超级电容器, 电极制备, 干法电极

Abstract:

Dry electrode technology is a key innovation in developing high-performance energy storage devices due to its solvent-free process, low manufacturing cost, high mechanical strength, and environmental benefits. This study analyzes the principles of dry electrode technology, summarizes the properties and applications of commonly used binders in dry electrode fabrication, highlights its advantages, reviews its origin and development history, and examines recent research progress in the fields of supercapacitors and lithium-ion batteries. Focusing on six dry electrode process technologies—polymer fibrillation, dry spray deposition, vapor deposition, hot-melt extrusion, direct pressing, and 3D printing—this study discusses their process principles, research advancements, key equipment, critical process parameters, and comparative advantages and disadvantages. The findings indicate that the current large-scale manufacturing of dry electrodes faces challenges, including limited production capacity, special raw material treatment requirements, and incompatibility with existing production lines. Finally, future research directions for dry electrode technology in lithium-ion batteries and supercapacitors are outlined, including developing new binders, optimizing dry mixing processes, adjusting electrode mass loading, refining production routes, and exploring novel fabrication methods. This study is a valuable reference for researchers and engineers, offering guidance for advancing dry electrode technology in supercapacitors and lithium-ion batteries.

Key words: lithium ion battery, supercapacitor, electrode preparation, dry electrode

中图分类号: