储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3122-3137.doi: 10.19799/j.cnki.2095-4239.2025.0289

• 储能材料与器件 • 上一篇    

高比容量富锂单晶材料的研究进展

李晶晶1(), 蒋丹枫2, 李嘉鑫2, 闫婕2, 申长洁3   

  1. 1.郑州中科新兴产业技术研究院,河南省储能材料与过程重点实验室,河南 郑州 450003
    2.中国科学院过程工程研究所,北京 100190
    3.龙子湖新能源实验室,河南 郑州 450003
  • 收稿日期:2025-03-27 修回日期:2025-04-18 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 李晶晶 E-mail:jjli@ipezz.ac.cn
  • 作者简介:李晶晶(1986—),女,硕士,工程师,研究方向为电池回收和材料制备,E-mail:jjli@ipezz.ac.cn
  • 基金资助:
    河南省重点研发计划(221111240100);河南省科技攻关(242102241044);中科豫能绿色过程联合研发中心(ZKYN2025007)

Research progress on high specific-capacity lithium-rich single crystal materials

Jingjing LI1(), Danfeng JIANG2, Jiaxin LI2, Jie YAN2, Changjie SHEN3   

  1. 1.Zhengzhou Institute of Emerging Industrial Technology, Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou 450003, Henan, China
    2.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3.Longzihu New Energy Laboratory, Zhengzhou 450003, Henan, China
  • Received:2025-03-27 Revised:2025-04-18 Online:2025-08-28 Published:2025-08-18
  • Contact: Jingjing LI E-mail:jjli@ipezz.ac.cn

摘要:

富锂层状氧化物材料因其高比容量和低成本优势,被视为突破锂离子电池能量密度低瓶颈的下一代正极材料。传统多晶团聚体形貌的富锂材料在长循环过程中面临结构重构引发的颗粒粉化、晶格氧不可逆析出等本征缺陷,导致电极/电解质界面持续恶化与容量衰减。单晶化通过消除晶界应力效应,被证实是缓解上述衰退机制的有效途径。本文回顾了高镍单晶材料在结构和电化学性能方面的独特优势,系统对比了富锂单晶与多晶材料在关键性能指标的差异,重点构建了首次库仑效率、结构稳定性、循环后形貌演变及界面副反应诱导的产气行为等多维度评估体系,围绕高温固相法、熔融盐辅助法、水热/溶剂热法等主流合成技术,阐述了其合成工艺中关键参数对晶体形貌的影响。此外,本文进一步总结了富锂单晶材料的改性策略及研究进展,元素掺杂、表面包覆、结构构筑等优化策略均可显著提高富锂单晶材料的结构稳定性和电化学性能。最后,对富锂单晶材料未来的发展方向进行了总结和展望,为高能量密度锂离子电池的开发与应用提供了理论依据和技术支持。

关键词: 富锂材料, 单晶, 多晶, 合成方法, 改性

Abstract:

Due to their high specific capacity and low cost, lithium-rich oxide materials have been regarded as next-generation cathodes to overcome the bottleneck of energy density in lithium-ion batteries. However, traditional polycrystalline agglomerated lithium-rich materials suffer from intrinsic defects such as particle pulverization and irreversible lattice oxygen release caused by structural reconstruction during long-term cycling, leading to continuous deterioration of the electrode-electrolyte interface and capacity fading. The single-crystal approach has been demonstrated as an effective strategy to mitigate these degradation mechanisms by eliminating grain boundary stress. This paper reviews the unique advantages of lithium-rich single-crystal materials with high nickel content in terms of structural and electrochemical properties. It systematically compares the differences between lithium-rich single-crystal and polycrystalline materials across key performance metrics, including initial Coulombic efficiency, structural stability, morphological evolution after cycling, and gas generation behavior induced by interfacial side reactions. Furthermore, it elaborates on the influence of critical parameters in mainstream synthesis processes, such as high-temperature solid-state methods, molten salt-assisted approaches, and hydrothermal/solvothermal methods, on crystal morphology. Modification strategies and research advancements in lithium-rich single-crystal materials are comprehensively summarized, demonstrating that optimization approaches, including elemental doping, surface coating, and structural engineering, can significantly enhance both structural stability and electrochemical performance. Finally, future development directions for lithium-rich single-crystal materials are discussed, providing theoretical foundations and technical support for the development and application of high energy density lithium-ion batteries.

Key words: Li-rich materials, single-crystal, polycrystalline crystal, synthesis method, modification

中图分类号: