储能科学与技术

• XXXX •    

Na-In/Na2S界面层实现稳定的全固态钠电池

孙华章1,2(), 万红利1,2, 姚霞银1,2()   

  1. 1.中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
    2.中国科学院大学,北京 100049
  • 收稿日期:2025-04-24 修回日期:2025-05-23
  • 通讯作者: 姚霞银 E-mail:sunhuazhang@nimte.ac.cn;yaoxy@nimte.ac.cn
  • 作者简介:孙华章(1999—),男,硕士研究生在读,研究方向为全固态钠电池氧化物固体电解质,E-mail:sunhuazhang@nimte.ac.cn
  • 基金资助:
    国家自然科学基金(52372244);中国科学院青年创新促进会(Y2021080)

Na-In Alloy/Na2S interface layer enables stable all-solid-state sodium batteries

Huazhang SUN1,2(), Hongli WAN1,2, Xiayin YAO1,2()   

  1. 1.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
    2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-04-24 Revised:2025-05-23
  • Contact: Xiayin YAO E-mail:sunhuazhang@nimte.ac.cn;yaoxy@nimte.ac.cn

摘要:

全固态钠电池因其潜在的成本优势及安全性,在大规模储能领域极具应用前景。然而,固体电解质与钠金属负极之间高的界面阻抗以及钠枝晶生长风险等问题阻碍了其实际应用。本文通过磁控溅射在Na3.4Zr1.9Zn0.1Si2.2P0.8O12(NZZSPO)固体电解质表面引入In2S3界面层,其与钠金属负极反应可在NZZSPO/Na界面处原位形成Na-In合金/Na2S界面层。该界面层提升了电解质/负极界面的润湿性,并且降低了界面阻抗,有效增强了NZZSPO@In2S3固体电解质抑制钠枝晶的能力。结果表明,基于NZZSPO@In2S3固体电解质的对称电池在60℃下的临界电流密度从2.6 mA cm-2提升至8.2 mA cm-2,且其室温下的临界电流密度也从1.6 mA cm-2提升至2.2 mA cm-2。与此同时,Na|In2S3@NZZSPO@In2S3|Na对称电池在60℃、5 mA cm-2下展现出2000小时的优异循环稳定性;即使在室温条件下,该电池在1.5 mA cm-2下也可稳定运行1500小时。此外,Na3V2(PO4)3|NZZSPO@In2S3|Na全固态电池在0.1C倍率下初始放电比容量为108.6 mAh g-1,库伦效率达到95.4%且循环100次后容量保持率为94.8%;即使将电流提高至1C倍率下,该电池循环1000次后显示出88.8%的容量保持率。本研究通过在NZZSPO/Na界面原位构筑Na-In/Na2S界面层,显著提升了固体电解质抑制钠枝晶的能力,为开发高性能全固态钠电池提供了新策略。

关键词: 全固态钠电池, 氧化物固体电解质, 硫化铟界面层, 钠金属负极

Abstract:

All-solid-state sodium batteries are highly promising for large-scale energy storage due to their potential cost-effectiveness and safety. However, their practical application is hindered by the high interfacial impedance between solid electrolytes and sodium metal anode, as well as risks of sodium dendrite growth. In this work, an In2S3 interfacial layer is introduced on Na3.4Zr1.9Zn0.1Si2.2P0.8O12 (NZZSPO) solid electrolyte via magnetron sputtering, which reacts with sodium metal anode to in-situ form a Na-In alloy/Na2S interlayer at NZZSPO/Na interface. The Na-In alloy/Na2S interlayer enhances the wettability of the solid electrolyte/anode interface and reduces interfacial impedance, effectively improving the ability of NZZSPO@In2S3 solid electrolyte to suppress sodium dendrite formation. The results show that the critical current density of the symmetric battery based on NZZSPO@In2S3 solid electrolyte enhances significantly, increasing from 2.6 mA cm-2 to 8.2 mA cm-2 at 60℃ and from 1.6 mA cm-2 to 2.2 mA cm-2 at room-temperature. Meanwhile, Na|In2S3@NZZSPO@In2S3|Na symmetric battery exhibits superior cycling stability for 2000 hours at 60℃ and 5 mA cm-2; even at room temperature, the battery can also operate stably at 1.5 mA cm-2 for 1500 hours. Additionally, Na3V2(PO4)3|NZZSPO@In2S3|Na all-solid-state battery delivers an initial discharge capacity of 108.6 mAh g-1 at 0.1C with a Coulombic efficiency of 95.4% and capacity retention of 94.8% after 100 cycles; when the current density increases to 1C, the battery still demonstrates a capacity retention of 88.8% after 1000 cycles. This work provides an in-situ approach for constructing a Na-In/Na2S interlayer at the NZZSPO/Na interface, significantly enhancing the ability of solid electrolyte to suppress sodium dendrite growth and offering a promising strategy for developing high-performance all-solid-state sodium batteries.

Key words: all-solid-state sodium battery, oxide solid electrolyte, In2S3 interface layer, sodium metal anode

中图分类号: