[1] |
LAURO S N, BURROW J N, MULLINS C B. Restructuring the lithium-ion battery: A perspective on electrode architectures[J]. eScience, 2023, 3(4): 100152. DOI: 10.1016/j.esci.2023.100152.
|
[2] |
BAUER A, SONG J, VAIL S, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): 1702869. DOI: 10.1002/aenm.201702869.
|
[3] |
GAO X R, XING Z, WANG M Y, et al. Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries[J]. Energy Storage Materials, 2023, 60: 102821. DOI: 10.1016/j.ensm.2023.102821.
|
[4] |
MA Q L, TSAI C L, WEI X K, et al. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S/cm and its primary applications in symmetric battery cells[J]. Journal of Materials Chemistry A, 2019, 7(13): 7766-7776. DOI: 10.1039/C9TA00048H.
|
[5] |
SHEN L, YANG J, LIU G, et al. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries[J]. Materials Today Energy, 2021, 20: 100691. DOI: 10.1016/j.mtener.2021.100691.
|
[6] |
MA Q L, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28(13): 4821-4828. DOI: 10.1021/acs.chemmater.6b02059.
|
[7] |
YANG J, LIU G Z, AVDEEV M, et al. Ultrastable all-solid-state sodium rechargeable batteries[J]. ACS Energy Letters, 2020, 5(9): 2835-2841. DOI: 10.1021/acsenergylett.0c01432.
|
[8] |
WANG X, FAN Y M, LI J Y, et al. Comprehensive understanding of the Na1+ xZr2SixP3- xO12 solid-state electrolyte in advanced sodium metal batteries: A critical review[J]. Energy & Environmental Science, 2025, 18(3): 1096-1129. DOI: 10.1039/D4EE04323E.
|
[9] |
MIAO X G, DI H X, GE X L, et al. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte[J]. Energy Storage Materials, 2020, 30: 170-178. DOI: 10.1016/j.ensm.2020.05.011.
|
[10] |
LIU T H, SHEN L, LI Y M, et al. NaF-rich multifunctional layers toward stable all-solid-state sodium batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(38): 45026-45034. DOI: 10.1021/acsami.3c10128.
|
[11] |
XIANG L, JIANG D C, GAO Y, et al. Self-formed fluorinated interphase with Fe valence gradient for dendrite-free solid-state sodium-metal batteries[J]. Advanced Functional Materials, 2024, 34(5): 2301670. DOI: 10.1002/adfm.202301670.
|
[12] |
LU Y, ALONSO J A, YI Q, et al. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J]. Advanced Energy Materials, 2019, 9(28): 1901205. DOI: 10.1002/aenm.201901205.
|
[13] |
WANG X X, CHEN J J, MAO Z Y, et al. Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity[J]. Chemical Engineering Journal, 2022, 427: 130899. DOI: 10.1016/j.cej.2021.130899.
|
[14] |
LIU F F, WANG L F, LING F X, et al. Homogeneous metallic deposition regulated by porous framework and selenization interphase toward stable sodium/potassium anodes[J]. Advanced Functional Materials, 2022, 32(49): 2210166. DOI: 10.1002/adfm.202210166.
|
[15] |
FU H Y, YIN Q Y, HUANG Y, et al. Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery[J]. ACS Materials Letters, 2020, 2(2): 127-132. DOI: 10.1021/acsmaterialslett.9b00442.
|
[16] |
NI Q, XIONG Y N, SUN Z, et al. Rechargeable sodium solid-state battery enabled by in situ formed Na-K interphase[J]. Advanced Energy Materials, 2023, 13(17): 2300271. DOI: 10.1002/aenm. 202300271.
|
[17] |
XU H T, ZHANG J Y, ZHANG H, et al. In situ topological interphases boosting stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(21): 2204411. DOI: 10. 1002/aenm.202204411.
|
[18] |
ZHOU X F, LIU F F, WANG Y J, et al. Heterogeneous interfacial layers derived from the in situ reaction of CoF2 nanoparticles with sodium metal for dendrite-free Na metal anodes[J]. Advanced Energy Materials, 2022, 12(42): 2202323. DOI: 10.1002/aenm. 202202323.
|
[19] |
JIANG Y, YANG Y, LING F X, et al. Artificial heterogeneous interphase layer with boosted ion affinity and diffusion for Na/K-metal batteries[J]. Advanced Materials, 2022, 34(13): 2109439. DOI: 10.1002/adma.202109439.
|
[20] |
LING F X, DIAO J F, YAO Y, et al. Enabling long-life all-solid-state sodium metal batteries via in situ construction of a stable solid electrolyte interphase[J]. Advanced Functional Materials, 2025, 35(34): 2419970. DOI: 10.1002/adfm.202419970.
|
[21] |
LIU T H, XIANG P, LI Y M, et al. In situ forming Na-Sn alloy/Na2S interface layer for ultrastable solid state sodium batteries[J]. Advanced Functional Materials, 2024, 34(32): 2316528. DOI: 10. 1002/adfm.202316528.
|
[22] |
CHEN H B, WANG T Y, et al. Unlocking solid-state sodium-metal batteries at -15 ℃ by electrolyte optimization and interface regulation[J]. ACS Applied Materials & Interfaces, 2025, 17(1): 1119-1126. DOI: 10.1021/acsami.4c16791.
|
[23] |
MOORTHY M, MOORTHY B, GANESAN B K, et al. A series of hybrid multifunctional interfaces as artificial SEI layer for realizing dendrite free, and long-life sodium metal anodes[J]. Advanced Functional Materials, 2023, 33(42): 2300135. DOI: 10.1002/adfm.202300135.
|
[24] |
HU K H, LV G P, ZHANG J, et al. Na2S treatment and coherent interface modification of the Li-rich cathode to address capacity and voltage decay[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42660-42668. DOI: 10.1021/acsami.0c08797.
|
[25] |
DEMINSKYI P, ROUF P, IVANOV I G, et al. Atomic layer deposition of InN using trimethylindium and ammonia plasma[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2019, 37(2): 020926. DOI: 10.1116/1.5079279.
|
[26] |
WAN H L, WANG Z Y, LIU S F, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design[J]. Nature Energy, 2023, 8(5): 473-481. DOI: 10.1038/s41560-023-01231-w.
|
[27] |
SARKAR S, THANGADURAI V. Critical current densities for high-performance all-solid-state Li-metal batteries: Fundamentals, mechanisms, interfaces, materials, and applications[J]. ACS Energy Letters, 2022, 7(4): 1492-1527. DOI: 10.1021/acsenergylett. 2c00003.
|