[1] |
LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. DOI: 10. 1126/sciadv.aas9820.
|
[2] |
WU M H, HAN S H, LIU S M, et al. Fire-safe polymer electrolyte strategies for lithium batteries[J]. Energy Storage Materials, 2024, 66: 103174. DOI: 10.1016/j.ensm.2024.103174.
|
[3] |
ZHANG W Q, NIE J H, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419. DOI: 10.1016/j.nanoen.2018.01.028.
|
[4] |
MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. DOI: 10.1038/natrevmats.2016.103.
|
[5] |
CHEN Q W, OUYANG C, LIANG Y T, et al. Composite polymer electrolyte with vertically aligned garnet scaffolds for quasi solid-state lithium batteries[J]. Energy Storage Materials, 2024, 69: 103418. DOI: 10.1016/j.ensm.2024.103418.
|
[6] |
JIN Y M, ZONG X, ZHANG X B, et al. Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 49: 433-444. DOI: 10.1016/j.ensm. 2022.04.035.
|
[7] |
JIAO K J, LIU S J, MA Y Y, et al. Long-term cycling quasi-solid-state lithium batteries enabled by 3D nanofibrous TiO2- x@Li anodes and in situ polymerized gel-electrolytes[J]. Chemical Engineering Journal, 2023, 464: 142627. DOI: 10.1016/j.cej. 2023.142627.
|
[8] |
ZHANG X Y, CHENG S C, FU C K, et al. Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Nano-Micro Letters, 2024, 17(1): 2. DOI: 10.1007/s40820-024-01498-y.
|
[9] |
VU T T, CHEON H J, SHIN S Y, et al. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects[J]. Energy Storage Materials, 2023, 61: 102876. DOI: 10.1016/j.ensm.2023.102876.
|
[10] |
LIU X Y, LI X R, LI H X, et al. Recent progress of hybrid solid-state electrolytes for lithium batteries[J]. Chemistry-A European Journal, 2018, 24(69): 18293-18306. DOI: 10.1002/chem.2018 03616.
|
[11] |
CHEN L, ZHU F, MA D J, et al. Enhanced 3D framework composite solid electrolyte with alumina-modified Li1.4Al0.4Ti1.6(PO4)3 for solid-state lithium battery[J]. Ionics, 2024, 30(4): 2019-2028. DOI: 10.1007/s11581-024-05421-8.
|
[12] |
GUO H L, SUN H, JIANG Z L, et al. A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery[J]. Journal of Materials Science, 2019, 54(6): 4874-4883. DOI: 10.1007/s10853-018-03188-8.
|
[13] |
MCOWEN D W, XU S M, GONG Y H, et al. 3D-printing electrolytes for solid-state batteries[J]. Advanced Materials, 2018, 30(18): 1707132. DOI: 10.1002/adma.201707132.
|
[14] |
TANG K H, BAI Q S, XU P W, et al. A thiol branched 3D network quasi solid-state polymer electrolyte reinforced by covalent organic frameworks for lithium metal batteries[J]. Small Methods, 2024, 8(12): 2301810. DOI: 10.1002/smtd.202301810.
|
[15] |
BAE M, AHN S, YOU S, et al. Expanded illite filler in UV-curable polymer electrolytes for all-solid-state Li-ion batteries[J]. Coatings, 2024, 14(9): 1158. DOI: 10.3390/coatings14091158.
|
[16] |
ZHU T J, HAO X Q, CAO Y A, et al. Ultraviolet-cured heat-resistant and stretchable gel polymer electrolytes for flexible and safe semi-solid lithium-ion batteries[J]. Journal of Power Sources, 2024, 613: 234944. DOI: 10.1016/j.jpowsour.2024.234944.
|
[17] |
WANG E L, LU Z Y, LIU C F, et al. UV curved PESF-LLZTO composite solid electrolyte to in situ construct ultrastable interface for all solid-state lithium battery[J]. Journal of the Electrochemical Society, 2024, 171(4): 040544. DOI: 10.1149/1945-7111/ad3eb8.
|
[18] |
CHEN Z X, ZHANG Y Q, ZHU B S, et al. Construction of high-performance solid-state electrolytes for lithium metal batteries by UV-curing technology[J]. Polymer Testing, 2024, 132: 108386. DOI: 10.1016/j.polymertesting.2024.108386.
|
[19] |
FAN H Y, YANG C H, WANG X D, et al. UV-curable PVDF-HFP-based gel electrolytes with semi-interpenetrating polymer network for dendrite-free lithium metal batteries[J]. Journal of Electroanalytical Chemistry, 2020, 871: 114308. DOI: 10.1016/j.jelechem.2020.114308.
|
[20] |
JIN L, AHMED F, RYU T, et al. Highly conductive and flexible gel polymer electrolyte with bis(fluorosulfonyl)imide lithium salt via UV curing for Li-ion batteries[J]. Membranes, 2019, 9(11): 139. DOI: 10.3390/membranes9110139.
|
[21] |
LU Y, HE K W, ZHANG S J, et al. UV-curable-based plastic crystal polymer electrolyte for high-performance all-solid-state Li-ion batteries[J]. Ionics, 2019, 25(4): 1607-1615. DOI: 10.1007/s11581-018-2788-8.
|
[22] |
MASHEKOVA A, BALTASH Y, YEGAMKULOV M, et al. Polycationic doping of the LATP ceramic electrolyte for Li-ion batteries[J]. RSC Advances, 2022, 12(46): 29595-29601. DOI: 10.1039/D2RA05782D.
|
[23] |
WANG S J, LV Q, JING Y T, et al. In situ polymerization design of a quasi-solid electrolyte enhanced by NMP additive for lithium metal batteries[J]. Energy Storage Materials, 2024, 69: 103390. DOI: 10.1016/j.ensm.2024.103390.
|
[24] |
CAI B R, CAO J H, LIANG W H, et al. Ultraviolet-cured Al2O3-polyethylene terephthalate/polyvinylidene fluoride composite separator with asymmetric design and its performance in lithium batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 5293-5303. DOI: 10.1021/acsaem.1c00804.
|
[25] |
JI Y, ZHANG Y H, SHI F N, et al. UV-derived double crosslinked PEO-based solid polymer electrolyte for room temperature[J]. Journal of Colloid and Interface Science, 2023, 629: 492-500. DOI: 10.1016/j.jcis.2022.09.089.
|
[26] |
WU X, JIE X H, LIANG X H, et al. Ultraviolet-thermal coupling cross-linked fabricate polymer/ceramic composite solid electrolyte for room temperature quasi solid state lithium ion batteries[J]. Journal of Energy Storage, 2024, 77: 109644. DOI: 10.1016/j.est. 2023.109644.
|
[27] |
LI J Q, LIU C J, HE M Y, et al. Improved the electrochemical performance between ZnO@Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and lithium metal electrode for all-solid-state lithium-ion batteries[J]. Electrochimica Acta, 2023, 439: 141549. DOI: 10.1016/j.electacta.2022.141549.
|
[28] |
ZHOU P, ZHANG X K, XIANG Y, et al. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries[J]. Nano Research, 2023, 16(6): 8055-8071. DOI: 10. 1007/s12274-022-4833-1.
|