储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3705-3714.doi: 10.19799/j.cnki.2095-4239.2025.0223

• 储能材料与器件 • 上一篇    下一篇

Al2O3 掺杂提升UV固化准固态电解质的电化学稳定性与离子传输性能

易卓彦(), 庞鹏飞, 黄亦聪, 廖明杰, 梁洪华, 朱归胜(), 赵昀云, 徐华蕊   

  1. 桂林电子科技大学,广西 桂林 541004
  • 收稿日期:2025-03-06 修回日期:2025-04-13 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 朱归胜 E-mail:3297395320@qq.com;zgs9539@163.com
  • 作者简介:易卓彦(1999—),女,硕士研究生,研究方向为准固态电解质,E-mail:3297395320@qq.com
  • 基金资助:
    广西科技计划项目(桂科 ┣AD23023013);桂科AB23075218┫;桂林市科学研究与技术开发计划(20220120-1);桂林电子科技大学研究生教育创新计划项目(C24CLF08CL15)

Enhancing the electrochemical stability and ion transport performance of UV-Cured quasi-solid-state electrolytes via Al2O3 doping

Zhuoyan YI(), Pengfei PANG, Yicong HUANG, Mingjie LIAO, Honghua LIANG, Guisheng ZHU(), Yunyun ZHAO, Huarui XU   

  1. Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Received:2025-03-06 Revised:2025-04-13 Online:2025-10-28 Published:2025-10-20
  • Contact: Guisheng ZHU E-mail:3297395320@qq.com;zgs9539@163.com

摘要:

锂离子电池(LIBs)因其高能量密度、长循环寿命和环境友好性,被广泛应用于便携式电子设备、电动汽车及大规模储能系统。然而,传统的液态电解质在循环过程中容易形成枝晶,导致电池短路并伴随副反应和界面不稳定性等问题,严重影响LIBs的安全性和使用寿命。当前聚合物复合固态电解质在构建高安全性锂金属电池方面展现出广阔应用前景,但传统的制备方法通常依赖高温或长时间热固化过程,限制了其发展。本工作提出一种基于紫外光(UV)固化技术的新型制备途径,快速构建了掺杂氧化铝(Al2O3)纳米粒子的乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)基复合固态电解质膜OICSE-Al2O3-X。实验结果表明,Al2O3掺杂有效降低了聚合物结晶区的形成,提高了电解质的离子电导率(OICSE-Al2O3-1在30 ℃下达到5×10-4 S/cm),并调控了聚合物链的排列与离子通道结构分布,实现了锂离子的高效传输(锂离子迁移数tLi+=0.66)。此外,Al2O3的加入还将电化学窗口拓宽至5 V,并显著提升了其循环稳定性。在0.5 C放电倍率下,OICSE-Al2O3-1循环200圈后容量保持率为89.3%,且在200 μA/cm2的电流密度下镀锂/剥锂测试中稳定循环1300 h。本研究为室温下高效制备准固态电解质提供了新思路,拓展了其在储能领域的应用前景。

关键词: 准固态电解质, 锂金属电池, 紫外光固化技术, 电化学性能

Abstract:

Lithium-ion batteries (LIBs) are widely used in portable electronic devices, electric vehicles, and large-scale energy storage systems due to their high energy density, long cycle life, and environmental friendliness. However, conventional liquid electrolytes can promote lithium dendrite growth during cycling, leading to internal short circuits, accompanied by side reactions and interfacial instability-severely compromising both safety and longevity of LIBs. Polymer-based composite solid-state electrolytes have emerged as promising candidates for constructing high-safety lithium metal batteries. However, their conventional fabrication methods often require high-temperature or extended thermal curing processes, limiting their scalability and practical deployment. In this study, we present a novel UV-curing-based fabrication route for the rapid construction of a composite solid-state electrolyte membrane, denoted as OICSE-Al2O3-1, composed of ethoxylated trimethylolpropane triacrylate doped with aluminum oxide (Al2O3) nanoparticles. The experimental results reveal that the addition of Al2O3 effectively suppresses the formation of crystalline domains within the polymer matrix, thereby enhancing the ionic conductivity. Specifically, OICSE-Al2O3-1 achieves an ionic conductivity of 5 × 10-4 S/cm at 30 ℃, while also modulating the polymer chain alignment and optimizing the distribution of ion-conducting channels, which facilitates efficient lithium-ion transport (with a lithium-ion transference number tLi+ of 0.66). Furthermore, the addition of Al2O3 broadened the electrochemical stability window to 5 V and significantly improved the cycling stability of the electrolyte. At a discharge rate of 0.5 C, OICSE-Al2O3-1 retained 89.3% of its initial capacity after 200 cycles. It also demonstrates stable lithium plating/stripping behavior over 1300 h at a current density of 200 μA/cm2. Moreover, this study presents an efficient, room-temperature fabrication strategy for quasi-solid-state electrolytes, extending their potential applications in advanced energy storage technologies.

Key words: quasi-solid-state electrolyte, lithium metal battery, UV-curing technology, electrochemical performance

中图分类号: