储能科学与技术

• 储能材料与器件 •    

锂电池低温电解液优化策略:挑战、进展与多维度协同设计

李瑶1(), 薛天杨1, 谢正娇3, 钱骥1,2,3(), 李丽1,2,3,4, 陈人杰1,2,3,4()   

  1. 1.北京市环境科学与工程重点实验室,材料学院,北京理工大学,北京 北京100081
    2.山东省新型化学储能及智能安全重点实验室,北京理工大学前沿技术研究院,山东 济南250300
    3.广东省高安全储能系统及智慧微网创新团队,北京理工大学(珠海),广东 珠海519088
    4.北京电动汽车协同创新中心,北京 北京100081
  • 收稿日期:2025-03-16 修回日期:2025-04-06
  • 通讯作者: 钱骥,陈人杰 E-mail:liyao0029@163.com;jiqian@bit.edu.cn;chenrj@bit.edu.cn
  • 作者简介:李瑶(2000—),女,硕士研究生,研究方向为锂电池电解液改性,E-mail:liyao0029@163.com
  • 基金资助:
    泰山学者工程(tsqn202312312);北京市自然科学基金-小米创新联合基金(L223012);山东省优秀青年科学基金项目(海外)(2023HWYQ-112);中国科协青年人才托举工程(2022QNRC001);国家重点研发计划(2022YFB2502102)

Low temperature electrolyte optimization strategies for lithium batteries: Challenges, advances and multi-dimensional collaborative design

Yao LI1(), Tianyang Xue1, Zhengjiao Xie3, Ji Qian1,2,3(), Li Li1,2,3,4, Renjie Chen1,2,3,4()   

  1. 1.Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, Beijing, China
    2.Shandong Key Laboratory of Advanced Chemical Energy Storage and Intelligent Safety, Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, Shandong, China.
    3.Innovative Research Team in High-Safety Energy Storage System and Smart Microgrids of Guangdong Province, Beijing Institute of Technology (Zhuhai), Zhuhai 519088, Guangdong, China
    4.Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, Beijing, China.
  • Received:2025-03-16 Revised:2025-04-06
  • Contact: Ji Qian, Renjie Chen E-mail:liyao0029@163.com;jiqian@bit.edu.cn;chenrj@bit.edu.cn

摘要:

随着可再生能源技术的快速发展,锂电池作为高效储能装置在电动汽车、航空航天及军事装备等领域应用广泛。然而,在低温环境下电池性能显著下降,主要表现为离子电导率降低、锂枝晶生长加剧及界面副反应增多,严重限制了其在极端温度场景下的应用。电解液作为锂离子运输过程中必不可少的组成部分,在扩大电化学稳定电位窗口、抑制副反应、优化电池性能等方面发挥着关键作用。本文系统综述了低温电解液的失效机制及多维度协同优化策略,旨在为高性能低温电解液的设计提供理论指导。本文首先从离子传输、电极与电解液界面性质和溶剂化结构三个方面介绍了在低温下导致电解液失效的原因。然后从溶剂、导电锂盐及添加剂三个方面介绍了近年来与锂电池电解液组分调控相关的研究进展。之后介绍新型低温电解液,主要包括弱溶剂化电解液、离子液体低温电解液、液化气体电解液(LGE)以及局部高浓电解液。结果表明,在低温条件下,调控电解液组分可以改善电池的离子电导率、抑制枝晶生长以及提高电池性能,是解决上述问题最简便、最有效的策略之一。最后,本文还展望了该领域未来的研究方向。

关键词: 锂离子电池, 锂金属电池, 低温电解液, 固体电解质界面, 溶剂化结构

Abstract:

With the rapid development of renewable energy technology, lithium batteries are widely used in electric vehicles, aerospace, and military equipment as efficient energy storage devices. However, the performance of the battery decreases significantly at low temperatures, mainly due to the decrease in ionic conductivity, the intensification of lithium dendrite growth, and the increase of interface side reactions, which seriously limit its application in extreme temperature scenarios. Electrolyte, as an essential component in the process of lithium-ion transportation, plays a key role in expanding the electrochemical stability window, inhibiting side reactions, and optimizing battery performance. In this paper, the failure mechanism and multi-dimensional cooperative optimization strategy of low temperature electrolytes are systematically reviewed, aiming at providing theoretical guidance for the design of high-performance low temperature electrolytes. In this paper, the causes of electrolyte failure at low temperature are introduced from three aspects: ion transports, interface properties between electrode and electrolyte, and solvation structure. Then, the research progress related to the regulation of electrolyte components of lithium batteries in recent years is introduced from three aspects: solvent, conductive lithium salt, and additives. Then the new low temperature electrolyte is introduced, which mainly includes weak solvent electrolyte, ionic liquid electrolyte, liquefied gas electrolyte, and local high concentration electrolyte. The results show that adjusting electrolyte composition can improve ionic conductivity, inhibit dendrite growth, and enhance battery performance at low temperature, which is one of the most simple and effective strategies to solve the above problems. Finally, the future research direction of this field is also prospected.

Key words: Lithium-ion batteries, Lithium metal batteries, Low temperature electrolyte, Solid electrolyte interphase, Solvation structure

中图分类号: