[1] |
叶林, 王凯丰, 赖业宁, 等. 低惯量下电力系统频率特性分析及电池储能调频控制策略综述[J]. 电网技术, 2023, 47(02): 446-464.
|
|
YE L, WANG K F, LAI Y N, et al. Review of frequency characteristics analysis and battery energy storage frequency regulation control strategies in power system under low inertia level[J]. Power System Technology, 2023, 47(02): 446-464.
|
[2] |
张振宇, 张钢, 栗龙轩, 等. 参与一次调频的新能源发电并网系统振荡机理分析与参数优化配置[J]. 西安交通大学学报, 2025, 59(03): 124-134.
|
|
ZHANG Z Y, ZHANG G, SU L X, et al. Analysis of oscillation mechanism and parameter optimization configuration for new energy power generation grid-connected system participating in primary frequency modulation[J]. Journal of Xi'AN Jiaotong University, 2025, 59(03): 124-134.
|
[3] |
罗胤, 常玉红, 赵颖, 等. 计及电网频率稳定的抽水蓄能电站控制策略研究[J]. 智慧电力, 2022, 50(11): 97-103+118.
|
|
LUO Y, CHANG Y H, ZHAO Y, et al. Control policy of pumped storage power station based on power grid frequency stability[J]. Smart Power, 2022, 50(11): 97-103+118.
|
[4] |
丁理杰, 史华勃, 陈刚, 等. 全功率变速抽水蓄能机组控制策略与调节特性[J]. 电力自动化设备, 2024, 44(3): 166-171+179.
|
|
DING L J, SHI H B,CHEN G, et al. Control strategy and regulation characteristics of variable speed pumped storage unit with full-size converter[J]. Electric Power Automation Equipment, 2024, 44(3): 166-171+179.
|
[5] |
陈亚红, 邓长虹, 武荷月, 等. 发电工况可变速抽蓄机组模式切换过程多阶段柔性协调控制[J]. 中国电机工程学报, 2021, 41(15): 5258-5274.
|
|
CHEN Y H, DENG C H, WU H Y, et al. Multi-stage soft coordinated control of variable speed pumped storage unit in the process of mode conversion under the generation condition[J]. Proceedings of the CSEE, 2021, 41(15): 5258-5274.
|
[6] |
SHI L J, Lao W J, Wu F, et al. Frequency regulation control and parameter optimization of doubly-fed induction machine pumped storage hydro unit[J]. IEEE Access, 2022, 10: 102586-102598.
|
[7] |
马小亮. 变频器新应用——变速抽水蓄能水电机组[J]. 电气传动, 2022, 52(02): 3-10.
|
|
MA X L. New application of frequency converter-variable-speed pumped storage hydroelectric unit[J]. Electric Drive, 2022, 52(02): 3-10.
|
[8] |
Zhao G, Zhang Y, Li Z, et al. Research on control strategy of full-size converter-based variable speed pumped storage unit in power generation condition[J]. International Transactions on Electrical Energy Systems, 2021, 31(11): e13114.
|
[9] |
李辉, 黄樟坚, 刘海涛, 等. 交流励磁抽水蓄能机组快速功率响应控制策略[J]. 电力自动化设备, 2017, 37(11): 156-161+175.
|
|
LI H, HUANG Z J, LIU H T, et al. Control strategy of rapid power response for AC excited pump storage unit[J]. Electric Power Automation Equipment, 2017, 37(11): 156-161+175.
|
[10] |
井浩然, 李佳, 赵红生, 等. 双馈变速抽水蓄能全工况转换过程建模与仿真[J]. 电力建设, 2023,44(10): 41-50.
|
|
JING H R, LI J, ZHAO H S, et al. Modeling and simulation of operating condition conversion of doubly-fed variable speed Pumped storage[J]. Electric Power Construction, 2023, 44(10): 41-50.
|
[11] |
李智, 王德林, 周鑫, 等. 风水互补主导一次调频的旋转备用优化配置[J]. 电工技术, 2020, (14): 7-12+15.
|
|
LI Z, WANG D L, ZHOU X, et al, Spinning reserve optimizing dispatch of primary frequency regulation dominated by wind power and hydropower complementation[J]. Electric Engineering, 2020(14): 7-12+15.
|
[12] |
朱博, 束洪春, 吴水军, 等. 风电调频补偿水锤效应的频率特性分析[J]. 电力系统保护与控制, 2023, 51(02): 65-76.
|
|
ZHU B, SHU H C, WU S J, et al. Analysis of frequency characteristics of water hammer effect compensatedby wind power frequency modulation[J]. Power System Protection and Control, 2023, 51(02): 65-76.
|
[13] |
祁伟, 沈勇, 苏海鹏, 等. 运行控制对水锤效应及调频能力的影响[J]. 水电能源科学, 2020, 38(09): 179-183.
|
|
QI W, SENG Y, SU H P, et al. Impact of operation control on water hammer effect and frequency modulation ability[J]. Water Resources and Power, 2020, 38(09): 179-183.
|
[14] |
张建新, 刘春晓, 陈亦平, 等. 异步联网方式下云南电网超低频振荡的抑制措施与试验[J]. 南方电网技术, 2016, 10(07): 35-39.
|
|
ZHANG J X, LIU C X, CHEN Y P, et al. Countermeasures and experiments on ultra low frequency oscillation of yunnan power grid in asynchronous interconnection mode[J]. Southern Power System Technology, 2016, 10(07): 35-39.
|
[15] |
谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(01): 158-169.
|
|
XIE X R, MA N J, LIU W, et al. Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(01): 158-169.
|
[16] |
郭强, 陈崇德, 胡阳, 等. 飞轮和锂电池储能联合光伏发电一次调频控制[J]. 电力系统及其自动化学报, 2023, 35(11): 1-9.
|
|
GUO Q, CHEN C D, HU Y, et al. Flywheel and lithium battery energy storage combined with photovoltaic power generation participating in primary frequency regulation control[J]. Proceedings of the CSU-EPSA, 2023, 35(11): 1-9.
|
[17] |
孙鹏, 蔡勇, 万黎, 等. 基于混合储能的风电场一次调频控制[J]. 电网与清洁能源, 2016, 32(02): 133-139.
|
|
SUN P, CAI Y, WAN L, et al. Wind farms' primary frequency regulation control based on the hybrid energy storage system[J]. Power System and Clean Energy, 2016, 32(02): 133-139.
|
[18] |
LIANG J Q, HARLEY R G. Pumped storage hydro-plant models for system transient and long-term dynamic studies[C]//IEEE PES general meeting. IEEE, 2010: 1-8.
|
[19] |
杨正文. 全功率变速恒频抽蓄机组VSG控制策略研究[D]. 北京交通大学, 2021.
|
|
YANG Z W. Research on VSG control strategy for full-power variable-speed constant-frequency pumped storage units[D]. Beijing Jiaotong University, 2021.
|
[20] |
饶成骄, 郭成, 马宁宁, 等. 考虑水轮机水锤效应的电网频率变化的解析方法[J]. 电网技术, 2018, 42(06): 1892-1898.
|
|
RAO C J, GUO C, MA N N, et al. Analytical method of power grid frequency change considering water hammer effect of turbine[J]. Power System Technology, 2018, 42(06): 1892-1898.
|
[21] |
黄际元, 李欣然, 曹一家, 等. 面向电网调频应用的电池储能电源仿真模型[J]. 电力系统自动化, 2015, 39(18): 20-24+74.
|
|
HUANG J Y, LI X R, CAO Y J, et al. Battery energy storage power supply simulation model for power grid frequency regulation[J]. Automation of Electric Power Systems, 2015, 39(18): 20-24+74.
|
[22] |
王奕宁, 向往, 张浩博, 等. 构网型直驱风力发电机组比例优化配置分析[J]. 电网技术, 2025, 49(02): 490-500.
|
|
WANG Y L, XIANG W, ZHANG H B, et al. Analysis of optimal proportion configuration of grid forming direct drive wind turbine[J]. Power System Technology, 2025, 49(02): 490-500.
|