1 |
SHEN Z, QIN M, XIONG F, et al. Nanocellulose-based composite phase change materials for thermal energy storage: status and challenges[J]. Energy & Environmental Science, 2023, 16: 830-861.
|
2 |
LI Z R, HU N, FAN L W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review[J]. Energy Storage Materials, 2023, 55: 727–753.
|
3 |
JAYATHUNGA D S, KARUNATHILAKE H P, NARAYANA M, et al. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113904.
|
4 |
KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14: 955–970.
|
5 |
DING W, BAUER T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7: 334–347.
|
6 |
TIAN H, ZHANG W, KOU Z. Molecular dynamics simulations on the structure and thermal property of SiO2/(LiCl-KCl) nanofluids for high temperature thermal energy storage[J]. Ceramics International, 2025, 51: 5125–5134.
|
7 |
ALJAERANI H A, SAMYKANO M, SAIDUR R, et al. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: A critical review[J]. Journal of Energy Storage, 2021, 44: 103280.
|
8 |
ABDELRAZIK A S, SAYED M A M, OMAR A M A, et al. Potential of molecular dynamics in the simulation of nanofluids properties and stability[J]. Journal of Molecular Liquids, 2023, 381: 121757.
|
9 |
田禾青,周俊杰,郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2): 584-594.
|
|
TIAN H, ZHOU J, GUO C. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 584-595.
|
10 |
Tian H, Du L, Huang C, et al. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer[J]. Journal of Materials Chemistry A, 2017, 5(28): 14811-14818.
|
11 |
Shin D, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5-6): 1064-1070.
|
12 |
Han D, Guene L B, Xu Y, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264(C): 114674.
|
13 |
DING J, PAN G, DU L, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano Energy, 2017, 39: 380-389.
|
14 |
NI H, WU J, SUN Z, et al. Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study[J]. Chemical Engineering Journal, 2019, 377: 120029.
|
15 |
CUI L, YU Q, WEI G, et al. Mechanisms for thermal conduction in molten salt-based nanofluid[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122648.
|
16 |
Ding J, Du L, Pan G, et al. Molecular dynamics simulations of the local structures and thermodynamic properties on molten alkali carbonate K2CO3[J]. Applied Energy, 2018, 220: 536-544.
|
17 |
Jo B, Banerjee D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. InternationalJournal of Thermal Sciences, 2015, 98: 219-227.
|
18 |
刘杰庭. 碱金属氯化物熔盐基纳米流体的热物性分子动力学模拟研究[D]. 北京: 华北电力大学, 2022.
|
|
LIU J. Molecular Dynamics Simulation of Thermophysical Properties of Alkali Metal Chloride Molten Salt-Based Nanofluids[D]. Beijing: North China Electric Power University, 2022.
|
19 |
田禾青, 寇朝阳, 周俊杰, 等. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(03):654-660.
|
|
TIAN H, KOU Z, ZHOU J, et al. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids[J]. Energy Storage Science and Technology, 2023, 12(03):654-660.
|
20 |
CACCAMO C, DIXONi M. Molten alkali-halide mixtures: a molecular-dynamics study of Li/KCl mixtures[J]. Solid state physics, 1980, 13(10): 1887-1900.
|
21 |
LARSEN B, FORLAND T, SINGER K. A Monte Carlo calculation of thermodynamic properties for the liquid NaCl+KCl mixture[J]. Molecular physics, 1973, 26(6): 1521-1532.
|
22 |
MULLER P F, BORDAT P. Reverse Non-equilibrium Molecular Dynamics[J]. lecture notes in physics, 2004.
|