储能科学与技术

• XXXX •    

基于γ-戊内酯浆料的石墨烯添加剂在锂离子电容器正极中的应用

徐建伟1,2, 王荣荣3,4, 刘洋1,2, 李晨3,4, 敬鹏1,2, 张熊3,4   

  1. 1.北京中绿中科锂电容科技有限公司,北京 100010
    2.中国绿发投资集团有限公司,北京 100020
    3.高密度电磁动力与系统全国重点实验室,中国科学院电工研究所,北京 100190
    4.山东省先进电磁变换技术重点实验室,齐鲁中科电工先进电磁驱动技术研究院,山东 济南 250013
  • 收稿日期:2025-07-31 修回日期:2025-09-01

Application of Graphene Conductive Additives in Lithium-Ion Capacitor Cathodes Based onγ-Valerolactone Slurry

Jianwei XU1,2, Rongrong WANG3,4, Yang LIU1,2, Chen LI3,4, Peng JING1,2, Xiong ZHANG3,4   

  1. 1.Beijing Zhonglv Zhongke Lithium-ion Capacitors Technology Co. , Ltd. , Beijing 100010, China
    2.China Green Development Investment Group Co. , Ltd. , Beijing 100020, China
    3.State Key Laboratory of High Density Electromagnetic Power and Systems, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    4.Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan 250013, Shandong, China
  • Received:2025-07-31 Revised:2025-09-01

摘要:

本研究构建了一种基于环保型γ-戊内酯(GVL)溶剂的石墨烯增强型活性炭正极浆料体系,并通过流变测试、扫描电子显微镜(SEM)、电化学阻抗谱(EIS)和循环伏安(CV)等多种表征手段,系统分析了电极微观结构的演变过程及其对电化学行为的影响机制。结果表明,GVL具有适宜的黏度与溶解性能,可确保浆料良好的分散性与涂布工艺稳定性,而石墨烯形成的三维导电网络则有效降低了电荷转移阻抗,有效提升了电极的倍率性能与反应动力学。在0.1 A/g电流密度下实现比容量77.2 mAh/g,较商业活性炭电极(64.7 mAh/g)显著提升了38%,在400次充放电循环后仍保持100%的容量。与硬炭负极组装成纽扣式锂离子电容器后,基于电极材料的能量密度达到172 Wh/kg,功率密度达到6 kW/kg。本研究为开发高性能储能电极材料的绿色制备提供了理论支撑与实验依据,在超级电容器、锂离子电容器等电化学储能领域具有重要的应用潜力。

关键词: 石墨烯, 活性炭正极, γ-戊内酯, 绿色浆料, 锂离子电容器

Abstract:

In this study, a graphene-enhanced activated carbon cathode slurry system based on the eco-friendly solvent γ-valerolactone (GVL) was developed. Through a combination of rheological analysis, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), the evolution of electrode microstructure and its influence on electrochemical behavior were systematically investigated. The results demonstrate that GVL possesses appropriate viscosity and solvation ability, ensuring good dispersion and coating stability of the slurry. Meanwhile, the three-dimensional conductive network formed by graphene significantly reduces charge transfer resistance, thereby enhancing the electrode's rate capability and reaction kinetics. At a current density of 0.1 A/g, the electrode achieved a specific discharge capacity of 77.2 mAh/g, representing a 38% improvement compared to commercial activated carbon electrodes (64.7 mAh/g), while maintaining 100% capacity retention after 400 charge-discharge cycles. When assembled with a hard carbon anode into a coin-type lithium-ion capacitor, the resulting device exhibited an energy density of 172 Wh/kg and a power density of 6 kW/kg based on active material mass. This work provides both theoretical guidance and experimental validation for the green fabrication of high-performance energy storage electrodes, highlighting its promising application in electrochemical storage systems such as supercapacitors and lithium-ion capacitors.

Key words: Graphene, Activated carbon cathode, γ-Valerolactone, Green slurry, Lithium-ion capacitor

中图分类号: