[1] |
P. Molaiyan, S. Bhattacharyya, G.S. dos Reis, R. Sliz, A. Paolella, U. Lassi, Towards greener batteries: Sustainable components and materials for next-generation batteries, Green Chem., 2024, 26, 7508-7531
|
[2] |
S.C. Mun, Y.H. Jeon, J.H. Won, Progress and challenges for replacing n-methyl-2-pyrrolidone / polyvinylidene fluoride slurry formulations in lithium-ion battery cathodes, Prog. Nat. Sci., 2024, 34, 194-206
|
[3] |
M. Léger, A. La Monaca, N. Basu, G.P. Demopoulos, Alternatives assessment of polyvinylidene fluoride-compatible solvents for n-methyl pyrrolidone substitution in lithium-ion battery cathodes, Next Sustainability, 2025, 5,
|
[4] |
F. Valentini, G. Brufani, B. Di Erasmo, L. Vaccaro, Γ-valerolactone (gvl) as a green and efficient dipolar aprotic reaction medium, Curr. Opin. Green Sustain., 2022, 36, 100634
|
[5] |
Z. Fang, Q. Duan, Q. Peng, Z. Wei, L. Jiang, J. Sun, Q. Wang, A sustainable delamination method to completely separate spent cathode foils via biomass-derived γ-valerolactone, Green Chem., 2023, 25, 1546-1558
|
[6] |
S. Perrone, F. Messa, A. Salomone, Towards green reductions in bio-derived solvents, Eur. J. Org. Chem., 2023, 26, e202201494
|
[7] |
F. Gao, R. Bai, F. Ferlin, L. Vaccaro, M. Li, Y. Gu, Replacement strategies for non-green dipolar aprotic solvents, Green Chem., 2020, 22, 6240-6257
|
[8] |
V.R. Ravikumar, A. Schröder, S. Köhler, F.A. Çetinel, M. Schmitt, A. Kondrakov, F. Eberle, J.-O. Eichler-Haeske, D. Klein, B. Schmidt-Hansberg, Γ-valerolactone: An alternative solvent for manufacturing of lithium-ion battery electrodes, ACS Appl. Energy Mater., 2021, 4, 696-703
|
[9] |
Y.-H. Liu, H. Pourzolfaghar, T. Le -Thanh, A. Srithongpusakul, G. Pomoung, A. Kittipoomwong, J.-Q. Liao, A.-Y. Hsieh, Y.-Y. Li, Hierarchical micro/mesopore-enriched, extra-high surface area activated carbon from coffee grounds for enhanced performance in electrical double layer capacitors, Biomass and Bioenergy, 2025, 201, 108062
|
[10] |
C. Li, X. Zhang, Z. Lv, K. Wang, X. Sun, X. Chen, Y. Ma, Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors, Chem. Eng. J., 2021, 414, 128781
|
[11] |
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.E. Jiang, V. Presser, V. Augustyn, Pseudocapacitance: From fundamental understanding to high power energy storage materials, Chem. Rev., 2020, 120, 6738-6782
|
[12] |
C.D. Reynolds, S.D. Hare, P.R. Slater, M.J.H. Simmons, E. Kendrick, Rheology and structure of lithium‐ion battery electrode slurries, Energy Technol., 2022, 10,
|
[13] |
U. Bhattacharjee, S. Bhowmik, S. Ghosh, N. Vangapally, S.K. Martha, Boron-doped graphene anode coupled with microporous activated carbon cathode for lithium-ion ultracapacitors, Chem. Eng. J., 2022, 430, 132835
|
[14] |
刘腾宇, 张熊, 安亚斌, 李晨, 马衍伟, 石墨烯在锂离子电容器中的应用研究进展, 储能科学与技术, 2020, 9, 1030
|
[15] |
T. Hu, X. Zhang, Y. An, S. Zhao, C. Li, X. Sun, K. Wang, Y. Ma, Nanoarchitectonics and applications of two-dimensional materials as anodes for lithium-ion capacitors, Energy Materials, 2024, 4,
|
[16] |
S. Yuan, Q. Lai, X. Duan, Q. Wang, Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review, J. Energy Storage, 2023, 61, 106716
|
[17] |
S. Dong, N. Lv, Y. Wu, G. Zhu, X. Dong, Lithium‐ion and sodium‐ion hybrid capacitors: From insertion‐type materials design to devices construction, Adv. Funct. Mater., 2021, 31, 2100455
|
[18] |
孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟, Mof衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展, 储能科学与技术, 2024, 13, 2665
|
[19] |
C. Li, X. Zhang, K. Wang, X. Sun, Y. Xu, F. Su, C.-M. Chen, F. Liu, Z.-S. Wu, Y. Ma, Nitrogen-enriched graphene framework from a large-scale magnesiothermic conversion of co2 with synergistic kinetics for high-power lithium-ion capacitors, NPG Asia Mater., 2021, 13, 59
|
[20] |
W.P. Wei, L. Wang, C. Liang, W.J. Liu, C. Li, Y.B. An, L.X. Zhang, X.Z. Sun, K. Wang, H.T. Zhang, X. Zhang, Y.W. Ma, Interface engineering of cose2/n-doped graphene heterostructure with ultrafast pseudocapacitive kinetics for high-performance lithium-ion capacitors, Chem. Eng. J., 2023, 474, 145788
|
[21] |
Y. Zhan, E. Edison, W. Manalastas, M.R.J. Tan, R. Satish, A. Buffa, S. Madhavi, D. Mandler, Electrochemical deposition of highly porous reduced graphene oxide electrodes for li-ion capacitors, Electrochim. Acta, 2020, 337, 135861
|
[22] |
Y.G. Sun, J. Tang, F.X. Qin, J.S. Yuan, K. Zhang, J. Li, D.M. Zhu, L.C. Qin, Hybrid lithium-ion capacitors with asymmetric graphene electrodes, J. Mater. Chem. A, 2017, 5, 13601-13609
|
[23] |
J. Min, X. Wen, T. Tang, X. Chen, K. Huo, J. Gong, J. Azadmanjiri, C. He, E. Mijowska, A general approach towards carbonization of plastic waste into a well-designed 3d porous carbon framework for super lithium-ion batteries, Chem. Commun., 2020, 56, 9142-9145
|
[24] |
Y. Kong, C. Li, Y. Xu, Y. An, S. Zhao, X. Zhang, S. Yi, Y. Gong, X. Sun, K. Wang, X. Zhang, Y. Ma, Vacancy chemistry regulated cobalt oxide nanostructures with fast kinetics for high-performance lithium-ion capacitors, Energy Mater. Adv., 2025, 6, 0180
|
[25] |
T. Eguchi, K. Sawada, M. Tomioka, S. Kumagai, Energy density maximization of li-ion capacitor using highly porous activated carbon cathode and micrometer-sized si anode, Electrochim. Acta, 2021, 394, 139115
|
[26] |
D. Yan, S.H. Li, L.P. Guo, X.L. Dong, Z.Y. Chen, W.C. Li, Hard@soft integrated morning glory like porous carbon as a cathode for a high-energy lithium ion capacitor, ACS Appl. Mater. Interfaces, 2018, 10, 43946-43952
|