储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3442-3452.doi: 10.19799/j.cnki.2095-4239.2024.0312
滕国营1,2(), 王新改1,2, 孟海军3(), 丁飞1,2()
收稿日期:
2024-04-09
修回日期:
2024-04-23
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
孟海军,丁飞
E-mail:3302564215@qq.com;menghj@sina.com;hilldingfei@163.com
作者简介:
滕国营(1997—),男,硕士,研究方向为锂离子电池,E-mail:3302564215@qq.com;
基金资助:
Guoying TENG1,2(), Xingai WANG1,2, Haijun MENG3(), Fei DING1,2()
Received:
2024-04-09
Revised:
2024-04-23
Online:
2024-10-28
Published:
2024-10-30
Contact:
Haijun MENG, Fei DING
E-mail:3302564215@qq.com;menghj@sina.com;hilldingfei@163.com
摘要:
由于技术原理不同,高功率储能器件在能量密度、功率特性和持续释能时间等方面差异较大,发展水平不一,所适用场景也不同。目前缺乏以单一技术特点为主线对典型高功率储能器件进行系统性梳理,使不同受用者对高功率储能器件有更加清晰的了解。本文概述了不同高功率储能器件的原理及适用场景,并从能量密度、功率密度、高功率特性等方面对各类高功率器件进行对比;重点以持续释能时间为轴线,对高功率储能器件水平现状进行分类论述,并对其未来发展方向进行总结讨论;最后,对高功率储能器件的发展作出展望。
中图分类号:
滕国营, 王新改, 孟海军, 丁飞. 高功率储能器件的研究进展[J]. 储能科学与技术, 2024, 13(10): 3442-3452.
Guoying TENG, Xingai WANG, Haijun MENG, Fei DING. Research progress of high-power energy storage devices[J]. Energy Storage Science and Technology, 2024, 13(10): 3442-3452.
表1
各类高功率储能器件特性参数"
类型 | 能量密度 /(Wh/kg) | 功率密度 /(W/kg) | 循环次数 | 快速输出能力 | 持续释能 时间 | 储能 形式 | 相关产品或报道 |
---|---|---|---|---|---|---|---|
金属薄膜电容器 | 3.0 J/cm3 | 175 M | >10000 | MW~GW | 0.5 μs | 电能 | GA公司CMX系列产品[ |
飞轮储能 | 10~30 | 10 k~1 M | >200000 | MW~GW | ms~s | 机械 | UT-CEM CPA 工程样机[ |
≥9 k | >10000000 | 百kW~MW | s~min | 清华大学300 Wh飞轮储能样机[ | |||
双电层电容器 | 8~10 | 25 k | >500000 | 百kW~MW | 10 ms~s | 电能 | Maxwell 3000F双层电容器 |
锂离子电容器 | 60~90 | 20 k | 50000~500000 | 百kW~MW | 5~15 min | 化学 | FDK EneCapTen |
高功率锂离子电池 | 90~120 | 2.5 k | 2000~5000 | 百kW~MW | min~h | 化学 | 东芝高功率钛酸锂电池[ SAFT的高功率锂离子电池 |
15 | 翟冬梅, 郭鹏卓, 黄宏斌, 等. 超级电容器电极材料及电解液的研究进展[J]. 化工新型材料, 2024, 52(1): 47-53. DOI: 10.19817/j.cnki.issn1006-3536.2024.01.003. |
ZHAI D M, GUO P Z, HUANG H B, et al. Research progress of electrode materials and electrolytes for supercapacitors[J]. New Chemical Materials, 2024, 52(1): 47-53. DOI: 10.19817/j.cnki.issn1006-3536.2024.01.003. | |
16 | SU L H, GONG L Y, WANG X X, et al. Improved low-temperature performance of novel asymmetric supercapacitor with capacitor/battery-capacitor construction[J]. International Journal of Energy Research, 2016, 40(6): 763-769. DOI: 10.1002/er.3480. |
17 | CEMENTON C, RAMIREDDY T, DEWAR D, et al. We may be underestimating the power capabilities of lithium-ion capacitors[J]. Journal of Power Sources, 2024, 591: 233857. DOI: 10.1016/j.jpowsour.2023.233857. |
18 | MOYE D G, MOSS P L, CHEN X J, et al. A design-based predictive model for lithium-ion capacitors[J]. Journal of Power Sources, 2019, 435: 226694. DOI: 10.1016/j.jpowsour.2019.226694. |
19 | ZHENG J P. Energy density theory of lithium-ion capacitors[J]. Journal of the Electrochemical Society, 2021, 168(8): 080503. DOI: 10.1149/1945-7111/ac180f. |
20 | 陈港欣, 孙现众, 张熊, 等. 高功率锂离子电池研究进展[J]. 工程科学学报, 2022, 44(4): 612-624. DOI: 10.13374/j.issn2095-9389. 2021.08.16.004. |
CHEN G X, SUN X Z, ZHANG X, et al. Progress of high-power lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 612-624. DOI: 10.13374/j.issn2095-9389.2021.08.16.004. | |
21 | PIERRE MWIZERWA J, LIU C Y, XU K, et al. Activated carbon/reduced graphene oxide wrapped LiFePO4 cathode for Li-ion batteries with ultrahigh capacities and high specific energy density[J]. FlatChem, 2022, 34: 100393. DOI: 10.1016/j.flatc. 2022.100393. |
22 | 王立超, 张晓虎, 张熊, 等. 高功率锂离子电池负极材料研究进展[J]. 电源技术, 2021, 45(9): 1213-1215. DOI: 10.3969/j.issn.1002-087X.2021.09.031. |
WANG L C, ZHANG X H, ZHANG X, et al. Review of anode materials for high-power lithium-ion battery[J]. Chinese Journal of Power Sources, 2021, 45(9): 1213-1215. DOI: 10.3969/j.issn.1002-087X.2021.09.031. | |
23 | TORABI M, SADRNEZHAAD S K. Nanostructured-microfibrillar polypyrrole coated NiTi current collectors for high power and shape memory LiFePO4 cathodes for Li-ion batteries[J]. Journal of Alloys and Compounds, 2023, 969: 172467. DOI: 10.1016/j.jallcom.2023.172467. |
24 | SERIES CMX-Self-Healing Energy Storage Capacitors.https://www.ga.com/capacitors/series-cmx-self-healing-energy-storage-capacitors. |
25 | KITZMILLER J R, PAPPAS J A, PRATAP S B, et al. Single and multiphase compulsator system architectures: A practical comparison[J]. IEEE Transactions on Magnetics, 2001, 37(1): 367-370. DOI: 10.1109/20.911856. |
26 | 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7): 133-140. DOI: 10.19595/j.cnki.1000-6753.tces.2011.07.019. |
DAI X J, DENG Z F, LIU G, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 133-140. DOI: 10.19595/j.cnki.1000-6753.tces.2011.07.019. | |
27 | 程立文. 日本东芝公司的超级充电电池SCiB[J]. 电源技术, 2008, 32(6): 355-356. |
CHENG L W. SCiB, a super rechargeable battery from Toshiba, Japan[J]. Chinese Journal of Power Sources, 2008, 32(6): 355-356. | |
28 | 陈才明. 金属化薄膜电容器的最新发展动态[J]. 电力电容器与无功补偿, 2011, 32(4): 1-4. DOI: 10.14044/j.1674-1757.pcrpc. 2011. 04.002. |
CHEN C M. Development trend of metalized film capacitor[J]. Power Capacitor & Reactive Power Compensation, 2011, 32(4): 1-4. DOI: 10.14044/j.1674-1757.pcrpc.2011.04.002. | |
29 | VALENTINE N, AZARIAN M H, PECHT M. Metallized film capacitors used for EMI filtering: A reliability review[J]. Microelectronics Reliability, 2019, 92: 123-135. DOI: 10.1016/j.microrel.2018.11.003. |
30 | MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490. DOI: 10.1016/j.rser.2016.09.060. |
31 | REID C M, MILLER T B, HOBERECHT M A, et al. History of electrochemical and energy storage technology development at NASA Glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2): 361-371. DOI: 10.1061/(asce)as.1943-5525.0000323. |
32 | HEARN C S, LEWIS M C, PRATAP S B, et al. Utilization of optimal control law to size grid-level flywheel energy storage[J]. IEEE Transactions on Sustainable Energy, 2013, 4(3): 611-618. DOI: 10.1109/TSTE.2013.2238564. |
33 | 吕东元, 吕奇超, 李延宝, 等. 磁悬浮飞轮储能用永磁偏置磁轴承设计[J]. 飞控与探测, 2021, 4(3): 76-82. |
LYU D Y, LYU Q C, LI Y B, et al. Design of permanent magnet biased magnetic bearing for magnetic suspension flywheel energy storage system[J]. Flight Control & Detection, 2021, 4(3): 76-82. | |
34 | 吕东元, 吕奇超, 李延宝, 等. 磁悬浮储能飞轮高速永磁电机设计及优化[J]. 大电机技术, 2022(2): 6-12, 44. DOI: 10.3969/j.issn.1000-3983.2022.02.002. |
LYU D Y, LYU Q C, LI Y B, et al. The design and optimization of high-speed permanent magnet machines for maglev flywheel energy storage system[J]. Large Electric Machine and Hydraulic Turbine, 20222: 6-12, 44. DOI: 10.3969/j.issn.1000-3983.2022.02.002. | |
35 | 刘付成, 李结冻, 李延宝, 等. 磁悬浮储能飞轮技术研究及应用示范[J]. 上海节能, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005. |
LIU F C, LI J D, LI Y B, et al. Research and application demonstration of maglev energy storage flywheel technology[J]. Shanghai Energy Conservation, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005. | |
36 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. | |
37 | 李钊, 孙现众, 李晨, 等. 介孔石墨烯/炭黑复合导电剂在锂离子电容器负极中的应用[J]. 储能科学与技术, 2017, 6(6): 1264-1272. DOI: 10.12028/j.issn.2095-4239.2017.0040. |
LI Z, SUN X Z, LI C, et al. Application of mesoporous graphene/carbon black composite conductive additive in lithium-ion capacitor anode[J]. Energy Storage Science and Technology, 2017, 6(6): 1264-1272. DOI: 10.12028/j.issn.2095-4239.2017.0040. | |
38 | 刘腾宇, 张熊, 安亚斌, 等. 石墨烯在锂离子电容器中的应用研究进展[J]. 储能科学与技术, 2020, 9(4): 1030-1043. DOI: 10.19799/j.cnki.2095-4239.2020.0041. |
LIU T Y, ZHANG X, AN Y B, et al. Research progress on the application of graphene for lithium-ion capacitors[J]. Energy Storage Science and Technology, 2020, 9(4): 1030-1043. DOI: 10.19799/j.cnki.2095-4239.2020.0041. | |
39 | 明海, 明军, 邱景义, 等. 预锂化技术在能源存储中的应用[J]. 储能科学与技术, 2017, 6(2): 223-236. DOI: 10.12028/2095-4239.2016.0096. |
MING H, MING J, QIU J Y, et al. Applications of pre-lithiation technologies in energy storage[J]. Energy Storage Science and Technology, 2017, 6(2): 223-236. DOI: 10.12028/2095-4239. 2016.0096. | |
40 | 张进, 王静, 时志强. 炭基锂离子电容器的研究进展[J]. 储能科学与技术, 2016, 5(6): 807-815. DOI: 10.12028/j.issn.2095-4239. 2016.0072. |
ZHANG J, WANG J, SHI Z Q. Research progress of carbon-based lithium ion capacitor[J]. Energy Storage Science and Technology, 2016, 5(6): 807-815. DOI: 10.12028/j.issn.2095-4239.2016.0072. | |
41 | 孔妍妍, 张熊, 安亚斌, 等. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. DOI: 10.19799/j.cnki.2095-4239.2024.0050. |
1 | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
XUE F, MA X M, YOU Y J. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. | |
2 | FARHADI M, MOHAMMED O. Energy storage technologies for high-power applications[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 1953-1961. DOI: 10.1109/TIA.2015.2511096. |
3 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. DOI: 10.1016/j.est.2019.101047. |
4 | 黄任飞. 钛酸锂电池在兆瓦级储能系统中的应用分析[J]. 储能科学与技术, 2015, 4(3): 290-294. DOI: 10.3969/j.issn.2095-4239. 2015.03.008. |
HUANG R F. Analysis for the applications of lithium titanate battery in the MW-class energy storage systems[J]. Energy Storage Science and Technology, 2015, 4(3): 290-294. DOI: 10.3969/j.issn.2095-4239.2015.03.008. | |
5 | 戴登峰, 闫鸣, 严兴朝, 等. 金属化薄膜电容器关键材料的现状与发展趋势[J]. 世界有色金属, 2022(8): 191-195. |
DAI D F, YAN M, YAN X C, et al. Current situation and development trend of key materials for metallized thin film capacitors[J]. World Nonferrous Metals, 2022(8): 191-195. | |
6 | BELKO V O, EMELYANOV O A, IVANOV I O, et al. Application of numerical simulation for metallized film capacitors electrodes design[J]. IEEE Access, 2021, 9: 80945-80952. DOI: 10.1109/ACCESS.2021.3085695. |
7 | MONTANARI D, SAARINEN K, SCAGLIARINI F,et al. Film Capacitors for Automotive and Industrial Applications, F, 2009 [C]. |
8 | HU D X, DAI X J, LI W, et al. A review of flywheel energy storage rotor materials and structures[J]. Journal of Energy Storage, 2023, 74: 109076. DOI: 10.1016/j.est.2023.109076. |
9 | HUTCHINSON A, GLADWIN D T. Optimisation of a wind power site through utilisation of flywheel energy storage technology[J]. Energy Reports, 2020, 6: 259-265. DOI: 10.1016/j.egyr.2020.03.032. |
10 | ZHENG X C, WU Z K, SONG G L, et al. Low-voltage ride-through control strategy for flywheel energy storage system[J]. Energy Science & Engineering, 2024, 12(4): 1486-1502. DOI: 10.1002/ese3.1683. |
11 | JIANG L, ZHANG W, MA G J, et al. Shape optimization of energy storage flywheel rotor[J]. Structural and Multidisciplinary Optimization, 2017, 55(2): 739-750. DOI: 10.1007/s00158-016-1516-0. |
12 | 梁志宏, 刘吉臻, 洪烽, 等. 电力级大功率飞轮储能系统耦合火电机组调频技术研究及工程应用[J]. 中国电机工程学报, 2023: DOI:10.13334/j.0258-8013.pcsee.231472. |
LIANG Z H, LIU J Z, HONG F,et al. Research and engineering application of frequency modulation technology of power-level high-power flywheel rnergy storage system coupled with thermal power unit[J]. Proceedings of the CSEE,2023: DOI:10.13334/j.0258-8013.pcsee.231472. | |
13 | ZHU Q C, ZHAO D Y, CHENG M Y, et al. A new view of supercapacitors: Integrated supercapacitors[J]. Advanced Energy Materials, 2019, 9(36): 1901081. DOI: 10.1002/aenm.201901081. |
14 | CHEN G Z. Supercapacitor and supercapattery as emerging electrochemical energy stores[J]. International Materials Reviews, 2017, 62(4): 173-202. DOI: 10.1080/09506608.2016.1240914. |
41 | KONG Y Y, ZHANG X, AN Y B, et al. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors[J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. DOI: 10.19799/j.cnki.2095-4239.2024.0050. |
42 | SUZUKI Y. Social & Environmental Report: FDK, 2008. |
43 | 中国科学院青岛生物能源所两项技术达到国际先进水平. http://cdjs.qibebt.ac.cn/info/1034/1140.htm. |
44 | 安仲勋, 颜亮亮, 夏恒恒, 等. 锂离子电容器研究进展及示范应用[J]. 中国材料进展, 2016, 35(7): 528-536, 544. DOI: 10.7502/j.issn.1674-3962.2016.07.07. |
AN Z X, YAN L L, XIA H H, et al. Research progress and pilot application of lithium-ion capacitor[J]. Materials China, 2016, 35(7): 528-536, 544. DOI: 10.7502/j.issn.1674-3962.2016.07.07. | |
45 | AHMED S, BLOOM I, JANSEN A N, et al. Enabling fast charging-A battery technology gap assessment[J]. Journal of Power Sources, 2017, 367: 250-262. DOI: 10.1016/j.jpowsour.2017.06.055. |
46 | FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chemical Reviews, 2022, 122(3): 3820-3878. DOI: 10.1021/acs.chemrev.1c00793. |
47 | CHOUDHURY S. Flywheel energy storage systems: A critical review on technologies, applications, and future prospects[J]. International Transactions on Electrical Energy Systems, 2021, 31(9): DOI: 10.1002/2050-7038.13024. |
48 | PULLEN K R. The status and future of flywheel energy storage[J]. Joule, 2019, 3(6): 1394-1399. DOI: 10.1016/j.joule.2019.04.006. |
49 | YASEEN M, KHATTAK M A K, HUMAYUN M, et al. A review of supercapacitors: Materials design, modification, and applications[J]. Energies, 2021, 14(22): 7779. DOI: 10.3390/en14227779. |
50 | 周润怡, 黄艳忠, 祁义恒, 等. 功率型电化学储能技术研究进展[J]. 动力工程学报, 2024, 44(3): 406-417. DOI: 10.19805/j.cnki.jcspe.2024.230633. |
ZHOU R Y, HUANG Y Z, QI Y H, et al. Review on high-power electrochemical energy storage technology[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 406-417. DOI: 10.19805/j.cnki.jcspe.2024.230633. | |
51 | ZUO W H, LI R Z, ZHOU C, et al. Battery-supercapacitor hybrid devices: Recent progress and future prospects[J]. Advanced Science, 2017, 4(7): 1600539. DOI: 10.1002/advs.201600539. |
52 | 侯润乔, 袁守怡, 王永刚. 室温钠-硫电池电解液的研究现状与展望(Ⅰ)[J]. 电池, 2024, 54(1): 3-8. DOI: 10.19535/j.1001-1579. 2024.01.002. |
HOU R Q, YUAN S Y, WANG Y G. Research status quo and prospect of electrolytes for room-temperature sodium-sulfur battery (Ⅰ)[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 3-8. DOI: 10.19535/j.1001-1579.2024.01.002. | |
53 | 李珂, 郝奕帆, 方振华, 等. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. |
LI K, HAO Y F, FANG Z H, et al. Development and military application analysis of high-power chemical power supply system[J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. DOI: 10.19799/j.cnki.2095-4239.2023.0501. |
[1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[6] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[7] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[8] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[9] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[10] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. |
[11] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[12] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[13] | 孙丙香, 杨鑫, 周兴振, 马仕昌, 王志豪, 张维戈. 基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法[J]. 储能科学与技术, 2024, 13(9): 2952-2962. |
[14] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[15] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||