• XXXX •
郭磊1(
), 智福鹏1(
), 魏致慧1, 郑冬1, 胡生勇2
收稿日期:2025-08-13
修回日期:2025-10-18
通讯作者:
智福鹏
E-mail:guoleicsu@163.com;zhifupeng@lzre.edu.cn
作者简介:郭磊(1994.12—),男,硕士,助理工程师,从事有色金属资源循环利用研究,E-mail:guoleicsu@163.com;
基金资助:
Lei Guo1(
), Fupeng Zhi1(
), Zhihui Wei1, Dong Zheng1, Shengyong Hu2
Received:2025-08-13
Revised:2025-10-18
Contact:
Fupeng Zhi
E-mail:guoleicsu@163.com;zhifupeng@lzre.edu.cn
摘要:
随着锂电池在新能源汽车及储能领域的广泛应用,其退役规模急剧增长。废旧三元正极材料(NCM)富含高品位的锂、镍、钴、锰等战略金属,高效回收对缓解资源短缺、保障能源安全具有重要意义。本文系统综述了废旧NCM中有价金属回收技术现状,着重剖析了火法工艺、湿法工艺、直接再生及绿色深共晶溶剂(DES)等工艺的基本原理、研究进展与核心优劣势。研究表明:焙烧工艺耦合湿法浸出可实现金属高效回收,但面临尾气处理复杂与流程长的问题;熔炼工艺虽处理量大、操作简单,但锂、锰元素易进入渣相导致回收率偏低。湿法工艺以酸浸为主,H2SO4-H2O2体系已工业化,但废液处理成本高;有机酸浸出环境友好,但效率受限;氨浸法对镍、钴选择性优异,却难以高效回收锂、锰。直接再生工艺通过熔盐再锂化或水热法修复材料结构并再生为正极材料,具备流程短的优势,但其适用性高度依赖材料退化程度。深共晶溶剂(DES)展现出绿色浸出潜力,但成本高、溶剂回收困难仍是制约工业化应用的关键瓶颈。综合分析表明,当前废旧NCM回收技术研究已进入高速发展阶段,亟需开发兼具绿色环保、短流程及低能耗特征的新型高效工艺,以推动资源循环利用与产业可持续发展。
中图分类号:
郭磊, 智福鹏, 魏致慧, 郑冬, 胡生勇. 废旧锂电池三元正极材料中有价金属的回收技术现状[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0735.
Lei Guo, Fupeng Zhi, Zhihui Wei, Dong Zheng, Shengyong Hu. Current Status of Recovery Technologies for Valuable Metals from Spent Lithium-Ion Battery Ternary Cathode Materials[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0735.
表2
废旧NCM在不同酸浸体系下的浸出效果"
| 浸出体系 | 反应条件 | 浸出率(%) | 文献 | |||||
|---|---|---|---|---|---|---|---|---|
| 固液比(g/L) | 温度( ℃) | 时间(min) | Li | Ni | Co | Mn | ||
| 1.5mol/L H2SO4+0.25MPa SO2 | 150 | 70 | 180 | — | 99.6 | 99.3 | 99.6 | |
| 2.75mol/L H3PO4 | 500/3 | 40 | 10 | 99.1 | 4.5 | 1.2 | 96.3 | |
| 1.5mol/L 三氯乙酸+4%(V)H2O2 | 50 | 60 | 30 | 99.7 | 91.8 | 93 | 89.8 | |
| 3mol/L 柠檬酸+3%(ω)H2O2 | 100 | 80 | 120 | 93.21 | 86.99 | 93.53 | 95.62 | |
| 1mol/L苹果酸+4%(V)H2O2 | 5 | 80 | 30 | 98 | 97.6 | 97.8 | 97.3 | |
| 2mol/L 甲酸+6%H2O2 | 50 | 60 | 120 | 98.22 | 99.96 | 99.96 | 99.95 | |
0.5mol/L乙酸+0.5mol/L维生素C 甘蔗渣0.3g/g,辅助微波450W | 20 | 50 | 40 | 99.6 | 97.8 | 98.6 | 96.2 | |
| 2mol/L H2SO4+4.5%(ω) H2O2 | 100 | 40 | 120 | 100 | 98.62 | 96.79 | 97.00 | |
| 2.5mol/L H2SO4+0.8mol/L NH4Cl | 100 | 80 | 60 | 99.11 | 97.49 | 97.55 | 97.34 | |
| 1mol/L H2SO4+0.075mol/L NaHSO3 | 20 | 95 | 240 | 96.7 | 96.4 | 91.6 | 87.9 | |
| 3mol/L HCl | 20 | 70 | 50 | 100 | 99.7 | 99.3 | 99.7 | |
3.1mol/L NH4OH+5%(v/v) H2O2+ 1.5moL/L NH4HCO3 | 20 | 80 | 120 | 99.28 | 99.63 | 99.76 | 1.05 | |
2.5mol/L(NH4)2CO3+10mol/LNH4OH O2流量为500mL/min | 125 | 20 | 360 | 92.8 | 98 | 98 | — | |
| 2.5mol/LNH4HCO3+0.6mol/LNa2SO3 | 50 | 80 | 150 | 96.86 | 96.36 | 93.43 | 0.41 | |
| [1] | LIU W, ZHENG Z, ZHANG Y, et al. Regeneration of LiNixCoyMnzO2 cathode materials from spent lithium-ion batteries: A review[J]. Journal of Alloys and Compounds, 2023,963: 171130. |
| [2] | 王海,边煜华,王佳东,等.退役锂离子电池锂资源回收工艺[J].储能科学与技术,2023,12(5):1453-1460 |
| WANG H, BIAN Y, WANG J, et al. Retired lithium battery recycling and battery-grade lithium carbonate preparation[J]. Energy Storage Science and Technology,2023,12(5):1453-1460 | |
| [3] | 中华人民共和国工业和信息化部. 2024年全国锂离子电池行业运行情况[EB/OL]. [2024-02-27]. https://wap.miit.gov.cn/gxsj/tjfx/dzxx/art/2025/art_f59c26cfa29d41e299f875c46f66aaff.html. |
| [4] | 张玉超, 张凤娇, 娄伟, 等. 废旧锂离子电池有价金属资源化利用的转化过程和潜在环境影响[J]. 储能科学与技术, 2024,13(6): 1861-1870. |
| ZHANG Y, ZHANG F, LOU W, et al. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact[J]. Energy Storage Science and Technology,2024,13(6):1861-1870 | |
| [5] | LU X, HE Y, HUANG Z, et al. Recovering spent Li-ion batteries as Li2CO3 and NCM (nickel cobalt manganese) carbonate precursor by thermal reduction and co-precipitation combined process[J]. Journal of Environmental Chemical Engineering, 2025,13(5): 118198. |
| [6] | 曹世伟, 马伊, 杨路, 等. 废旧三元锂电池正极材料回收再生研究进展[J]. 化工新型材料, 2024,52(z1): 5-12, 18. |
| CAO S, MA Y, YANG L, et al. Research progress on recycling and regenerating of waste ternary lithium battery cathode materials[J]. New Chemical Materials,2024,52(z1):5-12,18. | |
| [7] | 赵丹阳, 张翔, 徐帆, 等. 废旧三元锂离子电池正极材料资源化回收研究进展[J]. 储能科学与技术, 2023,12(10): 3087-3098. |
| ZHAO D, ZHANG X, XU F. et al. Progress of resource recovery of retired ternary lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2023,12(10): 3087-3098. | |
| [8] | PENG C, HAMUYUNI J, WILSON B P, et al. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system[J]. Waste Management, 2018,76: 582-590. |
| [9] | RAJ T, CHANDRASEKHAR K, KUMAR A N, et al. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives[J]. Journal of Hazardous Materials, 2022,429: 128312. |
| [10] | 刘延红. 电池回收市场与技术经济现状[J]. 广州化工, 2024,52(19): 1-3, 67. |
| LIU Y. Battery Recycling Market and Technical Economic Status[J]. GuangZhou Chemical Industry,2024,52(19):1-3,67 | |
| [11] | PINDAR S, DHAWAN N. Recycling of mixed discarded lithium-ion batteries via microwave processing route[J]. Sustainable Materials and Technologies, 2020,25: e00157. |
| [12] | LIU P, XIAO L, TANG Y, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials[J]. Journal of Thermal Analysis and Calorimetry, 2019,136(3): 1323-1332. |
| [13] | TAO R, XING P, LI H, et al. Full-Component Pyrolysis Coupled with Reduction of Cathode Material for Recovery of Spent LiNixCoyMnzO2 Lithium-Ion Batteries[J]. ACS Sustainable Chemistry & Engineering, 2021,9(18): 6318-6328. |
| [14] | YANG C, ZHANG J, YU B, et al. Recovery of valuable metals from spent LiNixCoyMnzO2 cathode material via phase transformation and stepwise leaching[J]. Separation and Purification Technology, 2021,267: 118609. |
| [15] | LIU X, WANG B, MA Y, et al. Preferential and efficient extraction of lithium under the combined action of reduction of herb-medicine residue and leaching of oxalic acid[J]. Waste Management, 2024,174: 44-52. |
| [16] | MA Y, ZHOU X, TANG J, et al. One-step selective recovery and cyclic utilization of valuable metals from spent lithium-ion batteries via low-temperature chlorination pyrolysis[J]. Resources, Conservation and Recycling, 2021,175: 105840. |
| [17] | YANG C, ZHANG J, CAO Z, et al.Sustainable and Facile Process for Lithium Recovery from Spent LiNixCoyMnzO2 Cathode Materials via Selective Sulfation with Ammonium Sulfate[J]. ACS Sustainable Chemistry & Engineering, 2020,8(41): 15732-15739. |
| [18] | CHANG D, YANG S, SHI P, et al. Selective recovery of lithium and efficient leaching of transition metals from spent LiNixCoyMnzO2 batteries based on a synergistic roasting process[J]. Chemical Engineering Journal, 2022,449: 137752. |
| [19] | 欧阳石保, 李强, 陈若葵, 等. 采用高温焙烧—硫酸浸出工艺从废电池材料中提取钴[J]. 湿法冶金, 2020,39(4): 304-308. |
| OUYANG S, LI Q, CHEN R,et al. Leaching of Cobalt in Spent Lithium Batteries by High Temperature Roasting—Sulfuric Acid Leaching[J]. Hydrometallurgy of China,2020,39(4):304-308. | |
| [20] | GUOXING R, SONGWEN X, MEIQIU X, et al. Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System[M]. In REDDY R G, CHAUBAL P, PISTORIUS P C, et al. Cham: Springer International Publishing, 2016:211-218. |
| [21] | HU X, MOUSA E, YE G. Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction - Part II: A pilot-scale demonstration[J]. Journal of Power Sources, 2021,483: 229089. |
| [22] | SCHWICH L, FRIEDRICH B. Proven Methods for Recovery of Lithium from Spent Batteries[M]. 2017. |
| [23] | FAN X, TAN C, LI Y, et al. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2021,410: 124610. |
| [24] | AZIMI G, CHAN K H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes[J]. Resources, Conservation and Recycling, 2024,209: 107825. |
| [25] | QING J, WU X, ZENG L, et al. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO2 pressure leaching and selective extraction of trace impurities[J]. Journal of Environmental Management, 2024,356: 120729. |
| [26] | ZHANG Y, WANG W, HU J, et al. Stepwise Recovery of Valuable Metals from Spent Lithium Ion Batteries by Controllable Reduction and Selective Leaching and Precipitation[J]. ACS Sustainable Chemistry & Engineering, 2020,8(41): 15496-15506. |
| [27] | ZHANG X, CAO H, XIE Y, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis[J]. Separation and Purification Technology, 2015,150: 186-195. |
| [28] | 罗文波, 焦梅, 周东波, 等. 混合废旧电池的柠檬酸浸出工艺[J]. 电池, 2022,52(5): 597-600. |
| LUO W, JIAO M, ZHOU D, et al. Citric acid leaching process for mixed spent batteries[J]. Battery Bimonthly, 2022,52(5):597-600 | |
| [29] | NING P, MENG Q, DONG P, et al. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system[J]. Waste Management, 2020,103: 52-60. |
| [30] | GAO W, ZHANG X, ZHENG X, et al. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process[J]. Environmental Science & Technology, 2017,51(3): 1662-1669. |
| [31] | YAN S, SUN C, ZHOU T, et al. Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives[J]. Separation and Purification Technology, 2021,257: 117930. |
| [32] | 陆修远, 张贵清, 曹佐英, 等. 采用硫酸-还原剂浸出工艺从废旧锂离子电池中回收LiNi0.6Mn0.2Co0.2O2[J]. 稀有金属与硬质合金, 2017,45(6): 14-23. |
| LU X, ZHANG G, CAO Z, et al. Recovery of LiNi0.6Mn0.2Co0.2O2 from Spent Lithium Ion Batteries by Leaching with H2SO4 and Reductants[J]. Rare Metals and Cemented Carbides,2017,45(6):14-23 | |
| [33] | LV W, WANG Z, CAO H, et al. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride[J]. Waste Management, 2018,79: 545-553. |
| [34] | MESHRAM P, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015,281: 418-427. |
| [35] | LIU T, CHEN J, SHEN X, et al. Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction[J]. Separation and Purification Technology, 2021,259: 118088. |
| [36] | LI D, ZHANG B, YE L, et al. Regeneration of high-performance Li1.2Mn0.54Ni0.13Co0.13O2 cathode material from mixed spent lithium-ion batteries through selective ammonia leaching[J]. Journal of Cleaner Production, 2022,349: 131373. |
| [37] | YANG C, ZHANG J, CHEN Y, et al. Pollutant reduction and closed-loop process for recovering high value-added products from spent lithium-ion batteries[J]. Journal of Power Sources, 2023,584: 233611. |
| [38] | 姚瞬雨, 丁威, 柯昌均, 等. 氨浸工艺从废旧锂电池中选择性回收有价金属[J]. 有色金属(冶炼部分), 2024(6): 14-22. |
| YAO S, DING W, KE C, et al. Selective Recovery of Value Metals from Spent Lithium Batteries by Ammonia Leaching Process[J]. Nonferrous Metals(Extractive Metallurgy),2024(6):14-22. | |
| [39] | MA L, XI X, ZHANG Z, et al. Separation and Comprehensive Recovery of Cobalt, Nickel, and Lithium from Spent Power Lithium-Ion Batteries: Minerals[Z]. 2022: 12. |
| [40] | LI J, YANG Y, YANG J, et al. A novel process for recovering LNCM battery cathode material using cryolite-based electrolyte through selective dissolution - Acid leaching - Coprecipitation[J]. Journal of Cleaner Production, 2024,476: 143756. |
| [41] | 王芳, 张邦胜, 刘贵清, 等. 废旧动力电池资源再生利用技术进展[J]. 中国资源综合利用, 2018,36(10): 106-111. |
| WANG F, ZHANG B, LIU G, et al. Process in Recycling Technology of Waste Power Battery Resources[J]. China Resources Comprehensive Utilization, 2018,36(10): 106-111. | |
| [42] | QIN Z, WEN Z, XU Y, et al. A Ternary Molten Salt Approach for Direct Regeneration of LiNi0.5Co0.2Mn0.3O2 Cathode[J]. Small, 2022,18(43): 2106719. |
| [43] | SHI Y, CHEN G, LIU F, et al. Resolving the Compositional and Structural Defects of Degraded LiNixCoyMnzO2 Particles to Directly Regenerate High-Performance Lithium-Ion Battery Cathodes[J]. ACS Energy Letters, 2018,3(7): 1683-1692. |
| [44] | YU X, YU S, YANG Z, et al. Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes[J]. Energy Storage Materials, 2022,51: 54-62. |
| [45] | ZHANG Q, De OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews, 2012,41(21): 7108. |
| [46] | TIAN Y, ZHOU F, WANG Z, et al. Deep eutectic solvent with acidity, reducibility, and coordination capability for recycling of valuable metals from spent lithium-ion battery cathodes[J]. Separation and Purification Technology, 2024,348: 127810. |
| [47] | WANG J, LYU Y, ZENG R, et al. Green recycling of spent Li-ion battery cathodes viadeep-eutectic solvents[J]. Energy & Environmental Science, 2024,17(3): 867-884. |
| [48] | JAFARI M, SHAFAIE S Z, ABDOLLAHI H, et al. A Green Approach for Selective Ionometallurgical Separation of Lithium from Spent Li-Ion Batteries by Deep Eutectic Solvent (DES): Process Optimization and Kinetics Modeling[J]. Mineral Processing and Extractive Metallurgy Review, 2023,44(3): 218-230. |
| [49] | HUA Y, SUN Y, YAN F, et al. Ionization potential-based design of deep eutectic solvent for recycling of spent lithium ion batteries[J]. Chemical Engineering Journal, 2022,436: 133200. |
| [50] | YU L, ZHANG M, FENG S, et al. Sustainable recycling of spent lithium-ion batteries: DL-carnitine hydrochloride-based DES approach with high leaching and co-precipitation efficiency and enhanced atom economy[J]. Separation and Purification Technology, 2025,377: 134234. |
| [51] | XU M, WANG J, WANG S, et al. Stepwise recycling valuable metals from spent lithium-ion batteries cathode: high-efficient leaching by deep eutectic solvent and selective separation by recrystallization and electrostatic interaction[J]. Separation and Purification Technology, 2025,376: 134020. |
| [52] | WANG M, LIU K, YU J, et al. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal[J]. Global Challenges, 2023,7(3): 2200237. |
| [1] | 丰伟. 废旧锂电池失效机制及回收再利用研究现状[J]. 储能科学与技术, 2025, 14(5): 1928-1930. |
| [2] | 陈英健, 吴尚, 曹元成, 杜宝帅, 王振兴, 欧阳钟文, 汤舜. 磁场分选在废旧锂电池正负极材料回收中的应用[J]. 储能科学与技术, 2025, 14(5): 1918-1927. |
| [3] | 杜文, 王君雷, 徐运飞, 李世龙, 王昆. 火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析[J]. 储能科学与技术, 2024, 13(1): 345-357. |
| [4] | 蒋龙进, 张顺, 乔羽, 刘臣臻, 饶中浩. 废旧锂电池负极石墨失效机制及回收利用研究进展[J]. 储能科学与技术, 2023, 12(3): 822-834. |
| [5] | 赵丹阳, 张翔, 徐帆, 隋艳伟. 废旧三元锂离子电池正极材料资源化回收研究进展[J]. 储能科学与技术, 2023, 12(10): 3087-3098. |
| [6] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
| [7] | 毛舒岚, 武倩, 王卓雅, 陆盈盈. 三元NCM锂离子电池高电压电解质的研究进展[J]. 储能科学与技术, 2020, 9(2): 538-550. |
| [8] | 陈晓轩, 李晟, 胡泳钢, 郑时尧, 柴云轩, 李东江, 左文华, 张忠如, 杨勇. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术, 2019, 8(6): 1003-1016. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||