储能科学与技术

• XXXX •    

废旧锂电池三元正极材料中有价金属的回收技术现状

郭磊1(), 智福鹏1(), 魏致慧1, 郑冬1, 胡生勇2   

  1. 1.兰州资源环境职业技术大学冶金工程学院,甘肃 兰州 730021
    2.甘肃有色冶金职业技术学院冶金与化学工程系,甘肃 金昌 737100
  • 收稿日期:2025-08-13 修回日期:2025-10-18
  • 通讯作者: 智福鹏 E-mail:guoleicsu@163.com;zhifupeng@lzre.edu.cn
  • 作者简介:郭磊(1994.12—),男,硕士,助理工程师,从事有色金属资源循环利用研究,E-mail:guoleicsu@163.com
  • 基金资助:
    甘肃省科技计划科技专员专项(25CXGA087)

Current Status of Recovery Technologies for Valuable Metals from Spent Lithium-Ion Battery Ternary Cathode Materials

Lei Guo1(), Fupeng Zhi1(), Zhihui Wei1, Dong Zheng1, Shengyong Hu2   

  1. 1.School of Metallurgical Engineering, Lanzhou Resources & Environment Voc-tech University, Lanzhou, 730021, China
    2.Department of Metallurgy and Chemical Engineering, Gansu College of Nonferrous Metallurgy, Jinchang, 737100, China
  • Received:2025-08-13 Revised:2025-10-18
  • Contact: Fupeng Zhi E-mail:guoleicsu@163.com;zhifupeng@lzre.edu.cn

摘要:

随着锂电池在新能源汽车及储能领域的广泛应用,其退役规模急剧增长。废旧三元正极材料(NCM)富含高品位的锂、镍、钴、锰等战略金属,高效回收对缓解资源短缺、保障能源安全具有重要意义。本文系统综述了废旧NCM中有价金属回收技术现状,着重剖析了火法工艺、湿法工艺、直接再生及绿色深共晶溶剂(DES)等工艺的基本原理、研究进展与核心优劣势。研究表明:焙烧工艺耦合湿法浸出可实现金属高效回收,但面临尾气处理复杂与流程长的问题;熔炼工艺虽处理量大、操作简单,但锂、锰元素易进入渣相导致回收率偏低。湿法工艺以酸浸为主,H2SO4-H2O2体系已工业化,但废液处理成本高;有机酸浸出环境友好,但效率受限;氨浸法对镍、钴选择性优异,却难以高效回收锂、锰。直接再生工艺通过熔盐再锂化或水热法修复材料结构并再生为正极材料,具备流程短的优势,但其适用性高度依赖材料退化程度。深共晶溶剂(DES)展现出绿色浸出潜力,但成本高、溶剂回收困难仍是制约工业化应用的关键瓶颈。综合分析表明,当前废旧NCM回收技术研究已进入高速发展阶段,亟需开发兼具绿色环保、短流程及低能耗特征的新型高效工艺,以推动资源循环利用与产业可持续发展。

关键词: 废旧锂电池, 三元正极材料, 有价金属回收, 元素提取

Abstract:

With the extensive application of lithium-ion batteries in new energy vehicles and energy storage systems, the scale of decommissioned batteries is growing exponentially. Spent LiNiₓCoᵧMn2O2 (NCM) cathodes contain high-grade strategic metals including lithium, nickel, cobalt, and manganese, making their efficient recovery critical for alleviating resource scarcity and ensuring energy security. This review systematically summarizes current technologies for recovering valuable metals from spent NCM cathodes, with focused analysis on the fundamental principles, research progress, and core advantages/limitations of pyrometallurgical, hydrometallurgical, direct regeneration, and green deep eutectic solvent (DES) approaches. Research indicates that: Roasting processes coupled with hydrometallurgical leaching enable efficient metal recovery but suffer from complex exhaust treatment and lengthy procedures; Smelting offers high throughput and operational simplicity, yet lithium and manganese preferentially report to slag phases resulting in suboptimal recovery rates. Hydrometallurgical methods predominantly employ acid leaching,while the H2SO4-H2O2 system has reached industrial implementation, it incurs high wastewater treatment costs; Organic acid leaching demonstrates environmental friendliness but limited efficiency; Ammonia leaching exhibits superior selectivity for nickel and cobalt but achieves low lithium and manganese recovery. Direct regeneration repairs cathode structure through molten-salt relithiation or hydrothermal treatment, featuring shortened process flowsheets though applicability is highly dependent on degradation severity. Deep eutectic solvents (DES) show promising green leaching potential, yet high costs and solvent regeneration difficulties remain critical barriers to industrial adoption. Comprehensive analysis reveals that spent NCM recycling technologies are undergoing rapid development. There is an urgent need to create novel high-efficiency processes integrating environmental sustainability, compact flowsheets, and low energy consumption to advance resource circularity and industrial sustainable development.

Key words: Spent lithium-ion batteries, NCM cathodes, Valuable metal recovery, Element extraction

中图分类号: