储能科学与技术

• XXXX •    

基于改进深度强化学习算法的电网侧储能系统调峰控制策略

杨瑞锋(), 韩昱   

  1. 国网山西省电力公司忻州供电公司,山西 忻州 034000
  • 收稿日期:2025-08-13 修回日期:2025-09-08
  • 作者简介:杨瑞锋,(1986-),男,硕士学位,工程师,主要研究方向:继电保护及其自动化、配网自动化。 E-mail:844024323@qq.com
  • 基金资助:
    国网山西省电力公司科技项目资助(5205H0230001)

Peak-Shaving Control Strategy for Grid-Side Energy Storage Systems Based on Improved Deep Reinforcement Learning Algorithm

Ruifeng YANG(), Yu HAN   

  1. State Grid Shanxi Electric Power Company Xinzhou Power Supply Company, Shan xiXin Zhou 034000
  • Received:2025-08-13 Revised:2025-09-08

摘要:

随着新能源大规模接入电网,传统调度模式难以应对系统高随机性与复杂性,电网侧储能系统的优化调度成为提升电网灵活性与可靠性的关键。本文提出一种基于改进深度强化学习的电网侧储能调峰控制策略:通过融合可再生能源出力、负荷需求及储能设备参数构建多源数据输入层,设计兼顾短期调峰效益与长期全生命周期成本的奖励函数,使智能体通过与微网环境交互学习最优调度策略。基于园区级微网测试系统的案例表明,该策略较传统调度方法,全生命周期成本降低11.9%-34.6%,电池寿命延长22.55%-37.36%,同时新能源综合消纳率提升至92.3%,微网峰谷差降幅达36.36%。该策略为现代电网中电网侧储能系统的动态智能管理提供数据驱动方案,助力提升电网运行效率与新能源消纳能力。

关键词: 改进深度强化学习, 电网侧储能, 奖励函数, 优化调度, 全生命周期

Abstract:

With the large-scale integration of new energy into the power grid, traditional scheduling modes struggle to address the high randomness and complexity of the system. The optimal scheduling of grid-side energy storage systems has become a key factor in enhancing the flexibility and reliability of the power grid. This paper proposes a peak-shaving control strategy for grid-side energy storage based on improved deep reinforcement learning: a multi-source data input layer is constructed by integrating renewable energy output, load demand, and energy storage equipment parameters, and a reward function that balances short-term peak-shaving benefits and long-term full-life cycle costs is designed, enabling the agent to learn the optimal scheduling strategy through interaction with the microgrid environment. Case studies based on a park-level microgrid test system show that, compared with traditional scheduling methods, this strategy reduces the full-life cycle cost by 11.9%-34.6%, extends the battery life by 22.55%-37.36%, increases the comprehensive renewable energy consumption rate to 92.3%, and reduces the peak-valley difference of the microgrid by 36.36%. This strategy provides a data-driven solution for the dynamic and intelligent management of grid-side energy storage systems in modern power grids, helping to improve the operational efficiency of the power grid and the ability to absorb renewable energy.

Key words: improved deep reinforcement learning, grid-side energy storage, reward function, optimized scheduling, full life cycle

中图分类号: