• 储能材料与器件 •
收稿日期:
2025-09-04
修回日期:
2025-09-19
通讯作者:
姜峰
E-mail:tmx20010118@163.com;jfeng6825@njtech.edu.cn
作者简介:
陶梦晓,女,硕士研究生,相变储热,E-mail:tmx20010118@163.com;
基金资助:
Mengxiao Tao(), Jinlong Cai, Feng Jiang(
), Xiang Ling
Received:
2025-09-04
Revised:
2025-09-19
Contact:
Feng Jiang
E-mail:tmx20010118@163.com;jfeng6825@njtech.edu.cn
摘要:
本文旨在系统研究梯级多孔骨架结构对复合相变材料(C-PCMs)传热与储热性能的优化机理,重点探究孔结构中孔径分布、孔径梯度与孔隙率分布对对相变过程的影响。通过构建孔隙尺度下的多孔介质物理模型,采用焓-孔隙度法进行数值模拟,分析不同孔隙结构下相变材料(PCMs)的熔化行为、液相流动及储热特性。研究结果表明,孔径分布在均匀孔隙率条件下对熔化过程具有显著影响。其中“大孔径布置于热源端、小孔径布置于远端”的分布方式能够最大程度发挥大小孔的自然对流与导热协同作用,熔化时间缩短16.8%。此外,横向连通的孔径梯度结构能够诱发局部微对流效应,尤其在大孔与小孔交界处,液相前沿弯曲更加明显,并在熔化后期使平均储热效率最高提升17.5%。相比之下,孔隙率分布对熔化过程的影响相对有限:前端低孔隙率比例增加虽可略微缩短熔化时间,但会导致总储热量和平均储热功率分别下降1.6%和1.7%。综上,本研究揭示了孔隙结构对C-PCMs熔化传热过程的作用机理,提出了通过合理设计孔径分布、梯度及孔隙率以实现高效储能的理论指导与方法依据,对多孔介质C-PCMs 的优化设计具有重要参考价值。
中图分类号:
陶梦晓, 蔡锦龙, 姜峰, 凌祥. 多孔介质复合相变材料孔隙结构优化与传热强化研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0789.
Mengxiao Tao, Jinlong Cai, Feng Jiang, Xiang Ling. Optimization of pore structure and heat transfer enhancement in porous composite phase change materials[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0789.
表1
物理模型几何参数"
模型 | 孔隙率 | 孔径 | 分布 | |
---|---|---|---|---|
孔径分布 | Hole 11 | 0.48 | 20:10:5 | 1:1:1 |
Hole 12 | 0.48 | 20:10:5 | 1:1:1 | |
Hole 13 | 0.48 | 20:10:5 | 4:3:2 | |
Hole 14 | 0.48 | 20:10:5 | 2:3:1 | |
孔径梯度 | Hole 21 | 0.47 | 30:15 | - |
Hole 22 | 0.46 | 30:20:15 | - | |
Hole 23 | 0.47 | 30:15:30 | - | |
Hole 24 | 0.43 | 30:20:15:30 | - | |
正梯度孔隙分布 | Hole 31 | 0.5:0.53:0.56 | 10:8:6:4 | 1:1:1 |
Hole 32 | 0.5:0.53:0.56 | 10:8:6:4 | 3:2:1 | |
Hole 33 | 0.5:0.53:0.56 | 10:8:6:4 | 1:2:3 | |
Hole 34 | 0.5:0.53:0.56 | 10:8:6:4 | 1:1 |
[1] | JIANG F, TAO M, CAI J, et al. Modification of steel slag to prepare chlorides based composite phase change materials with shape stability for high-temperature thermal energy storage[J]. Chemical Engineering Journal, 2024,491: 152062. |
[2] | XIE B, MA H, LI C, et al. Enhanced properties of stone coal-based composite phase change materials for thermal energy storage[J]. International Journal of Minerals, Metallurgy and Materials, 2024,31(1): 206-215. |
[3] | JIANG F, LING X, ZHANG L, et al. Improved thermal conductivity of form-stable NaNO3: using the skeleton of porous ceramic modified by SiC[J]. Solar Energy Materials and Solar Cells, 2021,231: 111310. |
[4] | JIANG F, LING X, ZHANG L, et al. Modified diatomite-based porous ceramic to develop shape-stabilized NaNO3 salt with enhanced thermal conductivity for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021,231: 111328. |
[5] | LI H, JIN A, CHEN S, et al. Paraffin–CaCl2· 6H2O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill[J]. International Journal of Minerals, Metallurgy and Materials, 2024,31(1): 60-70. |
[6] | HUANG X, SUN C, CHEN Z, et al. Experimental and numerical studies on melting process of phase change materials (PCMs) embedded in open-cells metal foams[J]. International Journal of Thermal Sciences, 2021,170: 107151. |
[7] | HU X, GONG X. Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure[J]. Applied Thermal Engineering, 2019,151: 231-239. |
[8] | 崔婷婷, 王燕. 基于LBM的多孔介质无机复合相变材料储能特性[J]. 储能科学与技术, 2023,12(01): 61-68. |
CUI T T, WANG Y. Energy storage characteristics of inorganic composite phase change materials in porous media based on LBM[J]. Energy Storage Science and Technology, 2023, 12(1): 61–68. | |
[9] | YANG Q, YANG T, YANG Y, et al. Numerical and experimental investigations on the effect of skeleton shapes and heat transfer directions on water freezing in porous media[J]. International Journal of Heat and Mass Transfer, 2025,236: 126392. |
[10] | ZHOU W, LI S, FENG Y, et al. Evaluation and optimization on heat transfer performance of a composite phase change material embedded in porous ceramic skeleton: A lattice Boltzmann study[J]. International Journal of Thermal Sciences, 2023,188: 108214. |
[11] | MARRI G K, BALAJI C. Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink[J]. International Journal of Heat and Mass Transfer, 2021,164: 120454. |
[12] | GHAHREMANNEZHAD A, XU H, SALIMPOUR M R, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams[J]. Applied Thermal Engineering, 2020,179: 115731. |
[13] | YANG X, WEI P, WANG X, et al. Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam[J]. Applied Energy, 2020,268: 115019. |
[14] | GUO J, WEI P, HUANG X, et al. Radially graded metal foams arrangement in heat storage device of photothermal utilization systems[J]. Solar Energy Materials and Solar Cells, 2023,256: 112315. |
[15] | FENG D, NAN J, FENG Y, et al. Numerical investigation on improving the heat storage and transfer performance of ceramic /D-mannitol composite phase change materials by bionic graded pores and nanoparticle additives[J]. International Journal of Heat and Mass Transfer, 2021,179: 121748. |
[16] | FENG D, ZHOU B, LI P, et al. Polyethylene glycol encapsulated in a plasmodesmata inspired carbon nanotube-porous carbon hierarchical skeleton for thermal energy storage[J]. Renewable Energy, 2025,255: 123846. |
[17] | KARAMI R, KAMKARI B. Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units[J]. Applied Thermal Engineering, 2019,146: 45-60. |
[18] | 刘广正, 陈宝明, 程素雅, 等. 梯度骨架对相变材料传热特性影响模拟研究[J]. 煤气与热力, 2021,41(5): 26-31. |
LIU G Z, CHEN B M, CHENG S Y, et al. Simulation study on the influence of gradient skeleton on heat transfer characteristics of phase change materials[J]. Gas & Heat, 2021, 41(5): 26–31. | |
[19] | TAO M, CAI J, ZHANG T, et al. Thermal performance and design optimization for high-temperature (≥ 500℃) latent heat thermal energy storage device: Using modified steel slag/chlorides composite phase change materials[J]. Applied Thermal Engineering, 2025: 127091. |
[20] | ZHAO B, LI C, JIN Y, et al. Heat transfer performance of thermal energy storage components containing composite phase change materials[J]. IET Renewable Power Generation, 2016,10(10): 1515-1522. |
[21] | ZHENG H, WANG C, LIU Q, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy conversion and management, 2018,157: 372-381. |
[22] | 代建龙, 李果, 曹一通, 等. 多孔金属泡沫强化石蜡相变蓄热性能[J]. 储能科学与技术, 2024,13(11): 3764-3771. |
DAI J L, LI G, CAO Y T, et al. Enhanced paraffin phase change heat storage performance by porous metal foam[J]. Energy Storage Science and Technology, 2024, 13(11): 3764–3771. | |
[23] | 见禹, 陈宝明, 朱彭真, 等. 含梯度孔密度骨架石蜡方腔相变传热特性[J]. 储能科学与技术, 2023,12(06): 1968-1980. |
JIAN Y, CHEN B M, ZHU P Z, et al. Phase change heat transfer characteristics of paraffin in a square cavity with gradient pore density skeleton[J]. Energy Storage Science and Technology, 2023, 12(6): 1968–1980. | |
[24] | 严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023,12(08): 2424-2434. |
YAN J H, LI J, LI Y M, et al. Numerical simulation on thermal energy storage performance of composite phase change unit based on gradient porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424–2434. |
[1] | 黄喆, 于志明, 卿召进, 张兆利. 旋转热边界下球形蓄热单元内PW/SEBS/EG复合相变材料的传热特性[J]. 储能科学与技术, 2025, 14(4): 1413-1423. |
[2] | 许荣玉, 陆海涛, 郭荷渡, 汤占赟, 李琦, 吴玉庭. 低熔点四元硝酸盐基定型复合相变材料的制备与研究[J]. 储能科学与技术, 2024, 13(5): 1451-1459. |
[3] | 宋梦琼, 彭宇, 廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术, 2024, 13(2): 578-585. |
[4] | 俞金翔, 王一波, 国建鸿, 张晓宇. 基于分时电价的热泵供热系统相变储热应用研究[J]. 储能科学与技术, 2024, 13(2): 669-676. |
[5] | 艾雄杰, 袁俊, 吕伟中, 万力. 基于相变储热的集成式太阳能集热器研究进展[J]. 储能科学与技术, 2024, 13(12): 4409-4420. |
[6] | 徐书彧, 王燕. 基于MgSO4 的热化学储能特性数值研究[J]. 储能科学与技术, 2024, 13(12): 4299-4309. |
[7] | 肖振坤, 陈珍, 杨壮, 戚宏勋, 闫君. 基于相变储热的先进高温热泵储能单元的热力学分析[J]. 储能科学与技术, 2024, 13(12): 4330-4338. |
[8] | 李龙, 杨玺庆, 陶玲. 基于修正显热容法对相变储热系统蓄热行为的仿真分析[J]. 储能科学与技术, 2024, 13(11): 3939-3948. |
[9] | 王海岚, 张晓宇, 国建鸿, 赵勇, 陈卓, 王一波. 基于中低温相变材料的管壳式储热单元传热性能数值分析[J]. 储能科学与技术, 2024, 13(10): 3376-3387. |
[10] | 孛衍君, 薛新杰, 王化宁, 赵长颖. 基于相变堆积床的卡诺电池系统设计与实验研究[J]. 储能科学与技术, 2023, 12(9): 2823-2832. |
[11] | 张琦, 李银雷, 栗艳芳, 宋俊, 吴学红, 刘重阳, 张雪龄. 膨胀石墨/多壁碳纳米管基共晶盐复合相变材料的制备及热特性[J]. 储能科学与技术, 2023, 12(8): 2435-2443. |
[12] | 李晓庆, 范玉泽, 刘晓燕. 骨架结构对固液相变蓄热性能影响的LBM研究[J]. 储能科学与技术, 2023, 12(6): 1774-1783. |
[13] | 陈红兵, 高雪宁, 刘涛, 王聪聪, 赵瑞, 孙俊辉, 王传岭, 何迪. 应用石蜡/GO复合相变材料的太阳能PV/T系统性能[J]. 储能科学与技术, 2023, 12(3): 661-668. |
[14] | 戴宇成, 王增鹏, 刘凯豹, 赵佳腾, 刘昌会. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458. |
[15] | 张亚磊, 崔海亭, 王晨, 陈浩松, 王超. 基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究[J]. 储能科学与技术, 2023, 12(12): 3789-3798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||