储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3811-3813.doi: 10.19799/j.cnki.2095-4239.2025.0823

• 储能系统与工程 • 上一篇    下一篇

基于大数据分析的智能电网储能系统优化策略研究

梁晨(), 张艺翔   

  1. 郑州铁路职业技术学院,河南 郑州 451400
  • 收稿日期:2025-09-11 修回日期:2025-10-11 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 梁晨 E-mail:lczzrvtc@163.com
  • 作者简介:梁晨(1992—),男,硕士,讲师,研究方向为电力系统自动化,E-mail:lczzrvtc@163.com

Research on optimization strategies for smart grid energy storage systems based on big data analysis

Chen LIANG(), Yixiang ZHANG   

  1. Zhengzhou Railway Vocational&Technical College, Zhengzhou 451400, Henan, China
  • Received:2025-09-11 Revised:2025-10-11 Online:2025-10-28 Published:2025-10-20
  • Contact: Chen LIANG E-mail:lczzrvtc@163.com

摘要:

随着智能电网的飞速发展,储能系统的作用日益显现。本文探讨了如何利用大数据技术对智能电网储能系统进行优化,分析了大数据在储能系统中的应用现状,包括数据采集、存储与处理等方面,介绍了基于大数据分析的储能系统优化策略,如容量配置优化、充放电策略优化、运行状态监测与故障诊断等,阐述了优化策略中所遇到的挑战,并对未来发展趋势进行了展望。

关键词: 智能电网, 储能系统, 大数据分析, 优化策略

Abstract:

With the rapid development of smart grids, the role of energy storage systems has become increasingly prominent. This paper discusses how to optimize smart grid energy storage systems using big data technologies, analyzes the current application status of big data in energy storage systems—including data collection, storage, and processing—and introduces optimization strategies for energy storage systems based on big data analysis, such as capacity configuration optimization, charging/discharging strategy optimization, operation status monitoring, and fault diagnosis. It also elaborates on the challenges encountered in these optimization strategies and prospects the future development trends.

Key words: smart grid, energy storage system, big data analysis, optimization strategy

中图分类号: